鑪

鑪(Rutherfordium),念 lú。是一種化學元素,符號為Rf,原子序為104。鑪是為紀念紐西蘭物理學家歐內斯特·盧瑟福而以他命名的。鑪是一種人工合成的放射性元素,不出現在自然界中,但可以在實驗室內產生。其最穩定的已知同位素為Rf,半衰期約為1.3小時。在元素周期表中,鑪位於d區塊,是第一個錒系後元素。鑪屬於第7周期、4族。化學實驗已證實,鑪是比同為4族的鉿較重的化學同系物。人們對鑪的化學特性了解不全。鑪與其他的4族元素相似,不過某些計算指出,由於相對論性效應,它可能會具有很不同的化學屬性。位於前蘇聯和美國加州的實驗室在1960年代分別製造出少量的鑪。由於雙方發現鑪的先後次序不清,因此蘇聯和美國科學家們對其命名產生了爭議;直到1997年國際純粹與套用化學聯合會才將鑪作為該元素的正式名稱。

基本信息

簡介

鑪是一種人工合成的放射性化學元素,它的化學符號是Rf,它的原子序數是104,屬於過渡金屬之一。

1964年,前蘇聯杜布納實驗室用加速到113-115MeV的氖-22核轟擊鈽-242靶,用顯微鏡測量了一個特殊的玻璃容器內的裂變軌跡,宣布合成了半衰期為0.3±0.1秒,質量數為260的104號元素,並命名為Kurchatovium(Ku),中文為“釒庫”。

1969年,美國的柏克來加州大學宣布用71MeV的碳-12轟擊鐦-249,得到-鑪257和-鑪258,前者的半衰期為4-5秒,釋放α粒子衰變為半衰期為105秒的鍩-253。在同一核熔合反應中,還發生釋放3箇中子得到鑪-258,半衰期為0.01秒。他們還用和69MeV的碳-13轟擊鐦-249得到-鑪259,半衰期為3-4秒,釋放α粒子衰變為半衰期為185秒的鍩-255。

當時的美國實驗室沒有能力加速氖-22,因而沒有能力證實杜布納實驗室的發現。鑒於證實存在釒盧-257和釒盧-259的事件有數千次,而杜布納實驗室的結果未能得到重複,近年IUPAC決議定名原104號元素為“釒盧”,以紀念紐西蘭物理學家盧瑟福。但在1970年,美國人用氮-15轟擊鐦-249確實得到了釒盧-260。

已知鑪的最穩定同位素為-鑪263,半衰期約10分鐘,它釋放α粒子衰變為鍩-257,也可以發生自發裂變。1998年德國Mainz大學E.Strub等報導,鑪和上兩個周期的鋯和鉿一樣,生成四氟化鑪,氧化態為+IV。由於錒系元素最後一個元素的最高氧化態已經降為+III,因而有理由相信鑪是錒系後的周期系第四副族元素。

歷史

發現

位於杜布納(當時位於前蘇聯)的聯合核研究所於1964年宣布首次發現鑪。研究人員以氖-22離子撞擊鈽-242目標,把產物與四氯化鋯(ZrCl4)反應後將其轉變為氯化物,再用溫度梯度色譜法把鑪從產物中分離出來。該團隊在一種具揮發性的的氯化物中探測到自發裂變事件,該氯化物具有類似於鉿的較重同系物的化學屬性。其半衰期數值最初並沒有被準確量度,但後來的計算則指出,衰變產物最可能為鑪-259:

242

94Pu+22

10Ne→264−x

104Rf→264−x

104RfCl4

1969年,美國加州大學伯克利分校以碳-12離子撞擊鐦,確定性地合成了鑪,並測量了Rf的α衰變:

249

98Cf+12

6C→257

104Rf+4n

在美國進行的實驗於1973年得到獨立證實,其中通過觀測Rf衰變產物——鍩-253——的K-αX光,確實了鑪為母衰變體。

命名爭議

第104號元素最終以譽為原子核物理學之父的紐西蘭物理學家、化學家歐內斯特·盧瑟福(左)命名。該元素最初建議以譽為蘇聯核子彈之父的蘇

伊格爾·瓦西里耶維奇·庫爾恰托夫伊格爾·瓦西里耶維奇·庫爾恰托夫

聯原子核物理學家伊格爾·瓦西里耶維奇·庫爾恰托夫(右)命名。

俄方科學家建議使用Kurchatovium作為該新元素命名,而美方科學家則建議使用Rutherfordium。1992年,IUPAC/IUPAP超鐨元素工作組(TWG)評審了發現報告後,認為雙方是同時合成了第104號元素的,所以雙方應該共同享有這份名譽。

美國的團隊其後回復了TWG,並稱TWG過分重視杜布納團隊的研究結果。他們也指出,俄方團隊曾在過去20年以內多次修改其報告細節,俄方對此沒有否認。他們還強調,TWG過於看重俄方團隊所進行的化學實驗,並指責TWG的委員會成員缺乏足夠的資歷。TWG隨後回應,稱已經審視過美方提出的各項意見,並認為沒有理由撤回先前有關發現順序的結論。IUPAC最終使用了美國團隊所提出的名稱(Rutherfordium),這可能反映了其實際改變了決定。

蘇聯的團隊稱其首次探測到該新元素,因此建議將其命名為Kurchatovium(Ku)以紀念伊格爾·庫爾恰托夫,其曾經領導過蘇聯核子彈計畫。東方集團國家的教科書都使用Kurchatovium作為該元素的正式命名,而中文則譯為“釒庫"。美國的團隊則提議用Rutherfordium(Rf)為新元素的命名,以紀念原子核物理學之父歐內斯特·盧瑟福。在確認正式命名之前,國際純粹與套用物理學聯合會(IUPAC)使用臨時系統命名Unnilquadium(Unq)。該名稱源自數字1、0和4的拉丁文寫法。1994年,IUPAC建議使用Dubnium( 的現名,名稱源自杜布納,Dubna)作為104號元素的名稱,因為Rutherfordium已被建議作為106號元素的名稱,而IUPAC也認為應該承認杜布納團隊對此領域研究的貢獻。然而,這時104至107號元素的名稱都具有爭議。1997年,有關的團隊解決了紛爭,並最終採用了現名Rutherfordium(中文譯為鑪)。Dubnium一名則成為了105號元素 的名稱。

性質

物理屬性

鑪在一般狀態下預計會是一種固體,其密度會很高,約為23g/cm。相比之下,已知密度最高的元素——鋨——的密度為22.61g/cm。這是由於鑪擁有高原子量,以及由於鑭系、錒系收縮和相對論性效應。實際產生足夠的鑪來測量這些屬性卻是不切實際的,而且就算製成了,樣本也會迅速衰變。鑪的原子半徑預測約為150pm。相對論性效應使鑪的7s軌域具有穩定性,而6d軌域則有不穩定性,因此Rf和Rf離子會失去6d電子,而非7s電子。這是和同族的較輕元素相反的。

化學屬性

鑪是第一個錒系後元素,也是第二個6d系過渡金屬。對鑪以及其離子態的電離能、原子半徑等屬性的計算指出,鑪與鉿相似,但與鉛相異。人們依此推斷,鑪的基本屬性會和其他的4族元素(鈦、鋯及鉿)相似。它的一些屬性是通過氣態及水溶化學實驗而取得的。同族前兩個元素的唯一穩定氧化態為+4,因此鑪也應會有+4氧化態。另外,鑪也預計會產生較不穩定的+3態。

對鑪化學屬性的計算指出,相對論性效應足以使p軌域的能級比d軌域的要低,價電子排布將為6d7s7p或甚至為7s7p,因此與鉿相比,鉛會和鑪更為相似。然而通過更準確的計算及對鑪化合物的化學研究指出,鑪的屬性與4族元素的相符。

與鋯和鉿相似,鑪預計會形成一種非常穩定的高熔點氧化物RfO。它會和鹵素反應形成四鹵化物RfX,在與水接觸後會水解成氧鹵化物RfOX。這些四鹵化物都是具揮發性的固體,在呈氣態時為單體四面體分子。

在水溶狀態時,Rf離子的水解程度較Ti低,但與鋯和鉿的相約。鑪的鹵化物與鹵素離子混合時,會促進形成絡離子。使用氯離子和溴離子時,反應會產生RfCl2−6和RfBr2−6。鋯和鉿會形成七氟及八氟絡合物,因此更大的鑪離子應該可以形成RfF2−6、RfF2−7和RfF4−

同位素

同位素半衰期及發現年份
(ε:電子捕獲;α:α衰變;SF:自發裂變)
同位素 半衰期 衰變方式 發現年份 所用反應
Rf 48 μs α, SF 1994年 Pb(Ti,n)
Rf 23 μs SF 1994年 Pb(Ti,2n)
Rf 2.3 s ε?, α, SF 1974年 Pb(Ti,2n)
Rf 6.4 ms α, SF 1974年 Pb(Ti,2n)
Rf 4.7 s ε, α, SF 1969年 Cf(C,4n)
Rf 4.1 s ε, α, SF 1969年 Cf(C,4n)
Rf 14.7 ms α, SF 1969年 Cf(C,4n)
Rf 3.2 s α, SF 1969年 Cf(C,3n)
Rf 2.5 s ε 1969年 Cf(C,3n)
Rf 21 ms α, SF 1969年 Cm(O,4n)
Rf 78 s α, SF 1970年 Cm(O,5n)
Rf 4 s ε, α, SF 2001年 Pu(Ne,5n)
Rf 2.3 s α, SF 1996年 Pu(Ne,4n)
Rf 15 min α, SF 1999年 Db(e−,νe )
Rf ? 8 s α, SF 1999年 Db(e−,νe )
Rf 1? h α ? 未知
Rf 2.5 min SF 2010年 Sg(—,α)
Rf 10 h ? α, SF ? 2007年? Db(e−,νe )?
Rf 1.3 h SF 2004年 Sg(—,α)
Rf 6 h ? α, SF ? 2004年? Db(e−,νe )?

鑪沒有穩定或自然產生的同位素。鑪的一些同位素已在實驗室中成功合成,所用方法有兩種:高速撞擊兩種原子核以產生核聚變,或製造出更高的元素並觀測其衰變產物。目前已知的同位素共有15種,質量數從253到268不等(264除外),大部分通過自發裂變進行衰變。

半衰期

較輕的鑪同位素一般具有較短的半衰期:Rf和Rf的為50μs。Rf、Rf和Rf更為穩定,半衰期在10ms左右;Rf、Rf、Rf和Rf的半衰期介乎1至5秒,而Rf、Rf和Rf則較穩定,半衰期分別為1、1.5和10分鐘。最重的同位素最為穩定,其中Rf的約為1.3小時。

低質量的同位素有兩種生成方式:兩種原子直接經過核聚變產生,或作為更重元素的衰變產物。通過直接核聚變產生的最重的同位素為Rf,比其質量更高的同位素則只在其他元素的衰變產物中出現,其中已證實的只有Rf一種。同位素Rf和Rf也曾被發現於衰變產物中,半衰期可能分別長達10小時和6小時,但它們是通過系統化研究間接探測的。雖然Rf仍待發現,但預計半衰期長達1小時。在被發現之前,Rf曾被預測擁有13小時的長半衰期,但實際只有2.5分鐘。

1999年,位於美國加州伯克利的科學家宣布成功合成3顆118原子。他們稱這些原子核先後射出7顆α粒子,並形成Rf原子核,但在2001年撤回了這一項結果。

同核異構體

最初有關合成Rf的研究指出,該核素主要是以自發裂變方式衰變的,半衰期為10至20分鐘。近期對 同位素的研究也同時產生了Rf原子,其半衰期較短,約為8秒。這兩種衰變方式意味著存在兩種不同的同核異構體,但由於觀測到的事件太少,未能確定同核異構體的屬性。

在利用Pu(Ne,5n)Rf這條反應研究鑪同位素的合成時,人們發現反應的產物進行了8.28MeV的α衰變,半衰期為78秒。之後重離子研究所在研究鎶和 的合成時,卻得到了不同的數據:衰變鏈中的Rf進行8.52MeV的α衰變,半衰期為4秒。後來的結果指出,該核素主要進行裂變。這些矛盾使人們對鎶的合成產生了懷疑。第一種同核異構體為Rf(或直接記為Rf),第二種為Rf(或記為Rf)。不過,一般認為前者屬於高自鏇基態,而後者則屬於低自鏇亞穩態。同核異構體Rf的發現及確認最終使鎶的發現在1996年得到了肯定。

對利用Pb(Ti,n)Rf這條反應的詳細光譜分析確認了Rf的一種同核異能態。分析發現Rf有著具15條α譜線的複雜光譜,並算出了兩種同核異構體的能級結構圖。類似的同核異構體也被發現存在於Rf中。

核合成

鑪等超重元素的合成方法是將兩種較輕的元素通過粒子加速器相互高速撞擊,並以此產生核聚變反應。多數鑪同位素都可以用這種方法合成,但某些較重的同位素則目前只在原子序更高的元素的衰變產物當中發現。

根據所用能量的高低,核合成分為“熱”和“冷”兩類。在熱核聚變反應中,低質量、高能的發射體朝著高質量目標(錒系元素)加速,產生處於高激發能的覆核(約40至50MeV),再裂變或蒸發出3至5顆中子。在冷核聚變反應中,聚變所產生的覆核有著低激發能(約10至20MeV),因此這些產物的裂變可能性較低。覆核冷卻至基態時,會只射出1到2顆中子,因此產物的含中子量更高。冷核聚變一詞在此指的不是在室溫下發生的核聚變反應(見冷核聚變)。

熱核聚變

位於杜布納的研究團隊在1964年首次嘗試合成鑪,所用的熱核聚變反應將氖-22發射體撞擊鈽-242目標:

242

94Pu+22

10Ne→264-x

104Rf+xn(x=3,5).

於首次研究中,他們探測到兩次半衰期分別為0.3秒和8秒的自發裂變事件。前者之後被撤回,而後者則源自Rf同位素。1966年,該團隊重複進行了這條反應,並對具揮發性的氯化物產物進行了化學研究。他們辨認出一種揮發性氯化物,其屬性與鉿的較重化學同系物相似,並以自發裂變快速衰變。這是產生了RfCl4的有力證據。儘管其半衰期沒有被準確地測量出來,但是之後的證據指出產物最有可能是Rf。團隊在接下來的幾年之內多次重複進行實驗,並於1971年把該同位素的自發裂變半衰期確定為4.5秒。

1969年,以阿伯特·吉奧索為首,位於加州大學的團隊嘗試證實杜布納團隊所公布的結果。在一次鋦-248和氧-16之間的反應中,他們未能證實杜布納團隊的結果,但卻探測到Rf的自發裂變,其半衰期只有10至30ms:

248

96Cm+16

8O→260

104Rf+4n.

1970年,美國團隊又再次研究了這條反應,但這次使用氧-18作為發射體,並探測到Rf的自發裂變,半衰期長達65秒(之後修正為75秒)。之後在加州勞倫斯伯克利國家實驗室進行的實驗得出一種短半衰期的Rf同核異構體(其進行自發裂變,半衰期為47ms)及長半衰期的自發裂變事件,後者不確定地指向Rf。

吉奧索的團隊也研究了鐦-249與碳-13之間的反應,併合成了短半衰期的Rf(其在11ms後進行自發裂變):

249

98Cf+13

6C→258

104Rf+4n.

在轉用碳-12之後,他們更首次觀測到Rf的α衰變。

杜布納的團隊於1977首次研究錇-249和氮-14之間的反應,並於1985年證實產生了Rf同位素,該同位素在28ms之後進行自發裂變:

249

97Bk+14

7N→260

104Rf+3n.

1996年,勞倫斯伯克利國家實驗室在進行鈽-244和氖-22的核聚變反應時,觀測到了同位素Rf:

244

94Pu+22

10Ne→266-x

104Rf+xn(x=4,5).

研究團隊將半衰期確定為2.1秒,而不是先前報告中的47ms,這意味著兩個半衰期值可能是源自Rf的兩種同核異構體的。杜布納的團隊也研究了該反應,並於2000年觀測到Rf的α衰變及Rf的自發裂變。

杜布納團隊於2000年首次公布了使用鈾目標體的熱核聚變反應:

238

92U+26

12Mg→264-x

104Rf+xn(x=3,4,5,6).

他們觀測到Rf和Rf的衰變,之後又觀測到Rf的衰變。在一系列利用鈾目標體的實驗中,勞倫斯伯克利國家實驗室的團隊於2006年探測到了Rf。

冷核聚變

首次合成鑪的冷核聚變反應是於1974年在杜布納進行的,反應將鈦-50射向鉛-208同位素目標:

208

82Pb+50

22Ti→258-x

104Rf+xn(x=1,2,3).

測量到的自發裂變事件源自Rf,而其後在重離子研究所(GSI)進行的實驗則測量了Rf和Rf的衰變屬性。

1974年,杜布納的研究人員研究了鉛-207和鈦-50之間的反應,並產生了Rf。1994年重離子研究所的一項研究使用鉛-206同位素,並探測到Rf和Rf。同年轉用鉛-204後則探測到Rf。

衰變

大部分質量數低於262的同位素都會出現於原子序更高的元素的衰變產物中,這能夠使之前探測的屬性有更準確的數值。較重的鑪同位素只出現在更重元素的衰變產物中。比如,自2004年起,在鐽-279衰變鏈中多次觀測到有通過α衰變形成Rf的事件:

279

110Ds→275

108Hs+α→271

106Sg+α→267

104Rf+α.

這又繼續進行自發裂變,半衰期約為1.3小時。

伯爾尼大學於1999年對 -263同位素的合成進行了研究,並發現了符合通過電子捕獲形成Rf的事件。產物中的鑪被分離出來,期間觀測到的有長半衰期(15分鐘)的自發裂變事件,以及半衰期大約為10分鐘的α衰變。2010年有關Fl-285衰變鏈的報告中顯示了5個連續的α衰變,在產生Rf之後,再進行自發裂變,半衰期為152秒。

2004年進行的實驗初步顯示,在Uup的衰變鏈中存在一種質量更高的同位素,Rf:

288

115Uup→284

113Uut+α→280

111Rg+α→276

109Mt+α→272

107Bh+α→268

105Db+α?→268

104Rf+ν

e.

不過衰變鏈的最後一個步驟仍待確認。在5個α衰變事件產生 -268之後,研究人員又觀測到了長半衰期的自發裂變事件。目前未知這些事件是否來自Db的直接自發裂變,還是Db進行長半衰期的電子捕獲而產生Rf。如果後者在產生後進行短半衰期的衰變,那么這兩種情況是無法分辨的。

根據2007年一項有關合成Uut的報告,同位素113進行類似的衰變,並形成Db,其再進行自發裂變,半衰期為22分鐘。假設沒有探測到Db的電子捕獲,則這些自發裂變事件就可能源自Rf,那么這個同位素的半衰期就不得而知了。

實驗化學

公式 名稱
RfCl 4 四氯化鑪
RfBr 4 四溴化鑪
RfOCl 2 氯氧化鑪
[RfCl 6 ] hexachlororutherfordate(IV)
[RfF 6 ] hexafluororutherfordate(IV)
K 2 [RfCl 6 ] potassium hexachlororutherfordate(IV)

氣態

早期對鑪的化學研究主要集中於使用氣態熱力色譜法及對相對沉積溫度吸附曲線的測量。最早在這一方面的研究是由杜布納進行的,他們希望以此確認鑪的發現。這些實驗使用了Rf同位素。實驗假設鑪是第一個6d系元素,因此會形成四氯化物。四氯化鑪比四氯化鉿(HfCl4)揮發性更高,因為其中的化學鍵更似共價鍵。

一系列的實驗已經證實,鑪具有典型的4族元素特性,會形成RfCl4和RfBr4,以及一種氯氧化物RfOCl2。在使用固態而非氣態的氯化鉀時,所產生的RfCl4的揮發性降低了。這表示產生了不揮發的K2RfCl6混合鹽。

水溶態

鑪的電子排布預計為[Rn]5f6d7s,因此會具有鉿的4族同系物的屬性。它會在強酸中形成Rf水合離子,並在氫氯酸、氫溴酸或氫氟酸中形成絡合物。

至今最具確定性的鑪水溶化學研究是由日本原子能研究所進行的,使用的為Rf放射性同位素。實驗分別用鑪、鉿、鋯及釷在氫氯酸中進行提取,並證實了鑪不具備錒系元素的特性。在和其同系物對比之下,鑪能夠肯定地歸為4族元素。在氯離子溶液中,鑪會形成六氯化鑪絡離子,這與鉿和鋯相似。

Rf+6Cl→[RfCl6]

在氫氟酸中的情況類似。鑪對氟離子的親和力較弱,並會形成六氟化鑪絡離子,而鉿和鋯則在同樣的氟離子濃度下產生了七氟甚至八氟絡離子:

Rf+6F→[RfF6]

基本字義

金屬元素,符號Rf(Rutherfordium)。有放射性,由人工核反應獲得。

·“釒盧”當爐子講,是“爐”的異體字;作為化學元素名,是規範字,簡化為“釒盧”,不寫作“鈩”。

名稱由來:為了紀念盧瑟福對於原子理論的貢獻,而以他的名字命名。

化學元素周期表

族→123456789101112131415161718電子層0族電子數
周期↓I A0
11
H
2
He
K2
II AIII AIV AV AVI AVII A
23
Li
4
Be
5
B
6
C
7
N
8
O
9
F
10
Ne
L
K
8
2
311
Na
12
Mg
13
Al
14
Si
15
P
16
S
17
Cl
18
Ar
M
L
K
8
8
2
III BIV BV BVI BVII BVIIII BII B
419
K
20
Ca
21
Sc
22
Ti
23
V
24
Cr
25
Mn
26
Fe
27
Co
28
Ni
29
Cu
30
Zn
31
Ga
32
Ge
33
As
34
Se
35
Br
36
Kr
N
M
L
K
8
18
8
2
537
Rb
38
Sr
39
Y
40
Zr
41
Nb
42
Mo
43
Tc
44
Ru
45
Rh
46
Pd
47
Ag
48
Cd
49
In
50
Sn
51
Sb
52
Te
53
I
54
Xe
O
N
M
L
K
8
18
18
8
2
655
Cs
56
Ba
57-
71
72
Hf
73
Ta
74
W
75
Re
76
Os
77
Ir
78
Pt
79
Au
80
Hg
81
Tl
82
Pb
83
Bi
84
Po
85
At
86
Rn
P
O
N
M
L
K
8
18
32
18
8
2
787
Fr
88
Ra
89-
103
104
Rf
105
Db
106
Sg
107
Bh
108
Hs
109
Mt
110
Ds
111
Rg
112
Uub
113
Uut
114
Uuq
115
Uup
116
Uuh
117
Uus
118
Uuo

鑭系元 素57
La
58
Ce
59
Pr
60
Nd
61
Pm
62
Sm
63
Eu
64
Gd
65
Tb
66
Dy
67
Ho
68
Er
69
Tm
70
Yb
71
Lu
錒系元 素89
Ac
90
Th
91
Pa
92
U
93
Np
94
Pu
95
Am
96
Cm
97
Bk
98
Cf
99
Es
100
Fm
101
Md
102
No
103
Lr

拼音是lu的漢字

相關詞條

相關搜尋

熱門詞條

聯絡我們