基本概述

變星(variablestar)星光強度有變化的恆星。亮度的變化可以是周期的,半規則的或完全不規則的。按光變的起源和特徵,可將變星劃分為3大類:食變星、脈動星和爆發星。食變星是雙星系統中的一個子星。當從地球上看去,該子星是在其伴星之前通過時,部分地屏遮住伴星的光;而伴星在該子星之前通過時,又部分地屏遮住該子星的光。每當上述情況發生時,雙星系統的亮度會出現起伏。雙星大陵五可能是最具有代表性的一個食變星。大陵五的西語名稱是algol,意為閃爍之魔。另外兩種類型的變星和食變星不同。它們都是自身變光的變星。也就是說,它們發出的輻射能隨時間而改變。脈衝變星是自身周期地膨脹和收縮,致使它們的亮度和大小都有脈動。造父變星和天琴RR型是脈動變星的兩種典型代表。爆發變星中包括新星、超新星等。突然爆發出輻射能的變星。亮度的突然增大隻持續很短時間,隨後又緩慢變暗。
科學分析

有些恆星的亮度變化肉眼就能發現,但大多數變星必須用一定的儀器、一定的觀測技術才能發現。照相測光和光電測光技術的套用,使變星數目迅猛增加,1985年開始陸續出版的第4版《變星總表》已收集了到1982年為止發現和命名的28450顆變星和變光體。分光技術提供了變星物理性質的重要信息,不僅為發現變星,也為研究變化的原因提供了條件。但在已知變星中,做過光譜觀測的僅占25%左右。少數變星在發現亮度變化前已經定名,仍繼續延用,此外,絕大多數變星都按國際通用的命名法命名,即用拉丁字母加上星座名作為變星的名字。對每一個星座,按變星發現的順序,從字母R開始,一直到Z,然後用兩個字母,從RR,RS起到ZZ,再用前面的字母AA,AB,……,一直到QZ,其中字母J完全不用,從第335個起,用V335,V336,……,加上星座名。
星系分類

變星種類繁多,涉及恆星演化的各個階段,變星的研究必然促進恆星理論的發展;食變星為確定恆星的質量、大小等物理量提供了難得的機會;造父變星的周光關係為宇宙尺度提供了基本校準,新星、超新星的極大亮度可作為粗略的距離指針;變星分屬於中介星族Ⅰ、鏇臂星族、盤星族、中介星族Ⅱ和暈星族五種不同空間結構次系,對銀河繫結構和動力學的研究也有重要意義。
物理變星

物理變星可分為許多類型,其中大多數為脈動變星,爆發變星。爆發變星是一種亮度突然激烈增強的變星。造成這類變星光度變化的原因是星體本身的爆發。爆發前,星體處於相對穩定(或緩慢變化)的狀態,一旦爆發星體的亮度可以迅速增加到原來的幾千或幾億倍,有的甚至在白天都可見到。經過一段時期又逐漸暗弱下來,一部分爆發變星,有人又稱之為災變變星。爆發變星爆發的規模又大有小,亮度

的變化也有大有小,有的星爆發還不止一次。爆發變星可以包括許多類型,例如,新星、超新星、再發新星、矮新星、類新星、耀星等。耀星是指幾秒到幾十秒內亮度突然增亮,經過十幾分鐘或幾十分鐘後慢慢復原的一類特殊的變星。它們的亮度在平時基本上不變,亮度增大時有的可增加到百倍以上。但這樣的亮度只能維持十幾到幾十分鐘,看起來好像是一次閃耀,所以取名耀星。
1924年發現船底座DH星有這樣的現象。1924年發現鯨魚座UV星亮度在三分鐘內增強11倍。觀測最多的是太陽附近的耀星。半人馬座比鄰星就是一顆耀星。星團星協中也發現了耀星,昴星團最多,460多顆;獵戶座大星雲區次之,300多顆。絕大多數的耀星是極小又冷的紅矮星,光度很低,耀亮的時間又短,因此,只有離太陽較近的耀星才能被我們認出來。不過,耀星的實際數目很多。如果用一架大型望遠鏡觀測,平均每90分鐘就可見到一次耀亮,據估計,銀河系的恆星中,約80%—90%可歸入耀亮的範疇。耀星表面存在局部活動區,耀亮就發生在這些區域,並且在同一區域可發生多次,這一點與太陽耀斑活動相似,但耀亮時輻射能量要比太陽耀斑的能量大100--1000倍.
食變星

脈動變星

在已發現的變星中,脈動變星占了一半以上,銀河系中約有200萬個。脈動變星的周期可以相差很大,短的在一小時以下,長至幾百天甚而10年以上。星等變化從大於10到小於千分之幾都有。根據亮度變化曲線的形狀,脈動變星可分為規則的,半規則的和不規則的三種不同的類型。規則的,按亮度變化周期長短分為短周期造父變星(如天琴座RR變星),長周期造父變星(如經典造父變星);半規則的,亮度變化有一定規律但周期不定,或者平均亮度不變,如金牛座RV變星。脈動變星的密度和絕對光度都與脈動周期有一定的關係,這些為研究恆星的物理本質和宇宙尺度提供了重要的依據。
在周期的脈動變星中,有一顆叫萄藁增二(鯨魚座O星)的最著名。這顆星是在1596年,荷蘭的法布里修斯觀測鯨魚座時,發現了一顆從未見到過的星,而且亮度較大是顆1等星。可是過了幾個月,這顆星逐漸暗淡下來,最後消失不見了。他覺得奇怪,便稱其為“怪星”。這顆星最暗時的星等為10等,一般在6等以下的星星,肉眼很難看見。1638年霍耳沃達第一次確認它的亮度變化,它的亮度變化周期介於320—370天之間,平均為332天。這顆星亮度變化很大,從1等星降至10等之內。人們將這類變星稱為長周期變星。它們光變周期一般在90—700天之內。
新星

一顆典型的新星,起亮度在幾天之內可以增加一萬倍以上,亮度的最大值可以維持幾個小時,然後再逐漸轉暗。轉暗的速度比增亮時的速度要慢的多。新星最亮的時候,其絕對光度可達太陽光度的10萬倍。只不過它的距離太遙遠了,在地球上的人們看來還是一顆星。新星爆發時釋放出的能量可達10^38焦。這意味著,它在幾百天中釋放的能量相當於我們的太陽在10萬年中所產生能量的總和。根據對新星光譜的研究,天文學家們知道了關於新星的一些細節。新星爆發十,半徑會增加到太陽半徑的100~300倍,而爆發結束後,體積卻又會縮小;爆發十,星殼無限制地向外膨脹,永遠離開星核而去,變成了稀薄的星際介質;爆發時恆星損失的質量可達10^26千克,這差不多相當於太陽質量的萬分之一。

新星是亮度在短時間內(幾小時至幾天)突然劇增,然後緩慢減弱的一類變星,星等增加的幅度多數在9等到14等之間。由於新星在發亮之前一般都很暗,甚至用大望遠鏡也看不到,而一旦發亮後,有的用肉眼就能看到,因此在歷史上被稱為“新星”。實際上,新星不是新產生的恆星。現在一般認為,新星產生在雙星系統中。這個雙星系統中的一顆子星是體積很小、密度很大的矮星,另一顆則是巨星。兩顆子星相距很近,巨星的物質受到白矮星的吸引,向白矮星流去。這些物質的主要成分是氫。落進白矮星的氫使得白矮星“死灰復燃”,在其外層發生核反應,從而使白矮星外層爆發,成為新星。新星爆發以後,所產生的氣殼被拋出。氣殼不斷膨脹,半徑增大,密度減弱,最後消散在恆星際空間中。隨著氣殼的膨脹和消散,新星的亮度也就緩慢減弱了下去。
超新星

超新星是爆發規模更大的變星,亮度的增幅為新星的數百至數千倍(相當於再增加6至9個星等),拋出的氣殼速度可超過1萬千米。超新星是恆星所能經歷的規模最大的災難性爆發。超新星爆發的形式有兩種。一種是質量與太陽差不多的恆星,是雙星系統的成員,並且是一顆白矮星。這類爆發與新星的差別是核反應發生在核心,整個星體炸毀,變成氣體擴散到恆星際空間。還有一種超新星,原來的質量比太陽大很多倍,不一定是雙星系統成員。這類大質量恆星在核反應的最後階段會發生災難性的爆發,大部分物質成氣殼拋出,但中心附近的物質留下來,變成一顆中子星。
T型變星

造父變星

造父變星(Cepheidvariablestar)一類高光度周期性脈動變星,也就是其亮度隨時間呈周期性變化。因典型星仙王座δ而得名。仙王座δ星最亮時為3.7星等,最暗時只有4.4星等,這種變化很有規律,周期為5天8小時47分28秒。這稱作光變周期。這類星的光變周期有長有短,但大多在1至50天之間,而且以5至6天為最多。由於我國古代將仙王座δ稱作“造父一”,所以天文學家便把此類星都叫做造父變星。人們熟悉的北極星也是一顆造父變星。科學家們經過研究發現,這些變星的亮度變化與它們變化的周期存在著一種確定的關係,光變周期越長,亮度變化越大。人們把這叫做周光關係,並得到了周光關係曲線。以後在測量不知距離的星團、星系時,只要能觀測到其中的造父變星,利用周光關係就可以將星團、星系的距離確定出來。因此,造父變星被人們譽為“量天尺”。
1912年,美國天文學家勒維特(Leavitt)在研究大麥哲倫星雲和小麥哲倫星雲時,在小麥哲倫星雲中發現25顆變星,其亮度越大,光變周期越大,極有規律,稱為周光關係。由於小麥哲倫星雲距離我們很遠,而小麥哲倫星雲本身和距離相比很小,於是可以認為小麥哲倫星雲中的變星距離我們一樣遠。這樣,天文學家就找到了比較造父變星遠近的方法:如果兩顆造父變星的光變周期相同則認為它們的光度就相同。這樣只要用其他方法測量了較近造父變星的距離,就可以知道周光關係的參數,進而就可以測量遙遠天體的距離。但是造父變星本身太暗淡,能夠用來測量的河外星系很少。其他的測量遙遠天體的方法還有利用天琴座RR變星以及新星等方法。造父變星在可見光波段,光變幅度0.1~2等。光變周期大多在1~50天範圍內,也有長達一二百天的。
造父變星實際上包括兩種性質不同的類型:星族Ⅰ造父變星(或稱經典造父變星)和星族Ⅱ造父變星(或稱室女W型變星),它們有各自的周光關係和零點,對相同的周期,前者的光度比後者小1.4等左右。造父變星光譜由極大時的F型變到極小時的G~K型,譜線有周期性位移,視向速度曲線的形狀大致是光變曲線的鏡像反映。這意味著亮度極大出現在星體膨脹通過平衡半徑的時刻(膨脹速度最大)而不是按通常想像那樣發生在星體收縮到最小,因而有效溫度最高的時刻,位相差0.1~0.2個周期。這種極大亮度落後於最小半徑的位相滯後矛盾,被解釋為星面下薄薄的電離氫區在脈動過程中跟輻射進行的相互作用而引起的現象。