因此,實際激波是有厚度的,但數值十分微小,只有氣體分子自由程的某個倍數,波前的相對超音速馬赫數越大,厚度值越小。在激波內部有氣體與氣體之間的摩擦存在,使一部分機械能轉變為熱能。所以激波的出現意味著機械能的損失和波阻力的產生。因此在設計飛行器時,一般應避免激波的出現或減弱激波強度。激波就其形狀來分有正激波、斜激波、離體激波、圓錐激波等。
正激波
激波的波陣面與來流垂直。超音速氣流經正激波後,速度突躍式地變為亞音速,經過激波的流速指向不變。圖a曲線激波中的中間一段是正激波。此外,在超音速的管道流動中也可以出現正激波。
斜激波
波陣面與來流不垂直。圖a 曲線激波中除中間一小段是正激波外,其餘部分都是斜激波,與正激波相比,氣流經過斜激波時變化較小,或者說斜激波比正激波為弱。此外,氣流經過斜激波時指向必然突然折轉。因而有兩個角度,一個是波陣面與來流指向之間的夾角,或稱激波斜角β,另一個是波後氣流折離原指向的折轉角δ。β角越大,激波越強。β角小到等於馬赫角時,激波就減弱到變成微弱擾動波或馬赫波了。
超音速飛機的翼剖面一般採用尖的前後緣,如圖b,這時頭部出現斜激波。斜激波後的壓強升高量比正激波為小,機翼受到的波阻力小。後緣處也有激波,那是因為上下翼面流來的氣流要在後緣處匯合,兩方面來的氣流都折轉指向才能匯合成一個共同的指向,斜激波正是超音速氣流折轉指向的一種形式。
其他形式的激波
那種不依附於物體的激波稱為離體激波。圖b 是附體激波。翼型的半頂角確定之後,飛行馬赫數M1要大到一定的值之後才有附體激波存在。飛行馬赫數未達此值以前只存在離體激波。而像圖a那樣的鈍頭物體,則不論M1多大都只存在離體激波,只是隨M1上升,離體激波至物體的距離有所縮小而已。離體激波中間很大一部分十分接近於正激波,波後壓強升得很高,物體的波阻很大。這正是太空飛行器重返大氣層時所需要的。太空飛行器在外層空間繞地球轉動時速度很高,具有巨大的動能。重返大氣層時要把速度降下來,使動能迅速變為熱能並迅速耗散掉。離體激波比附體激波能消耗更多的動能,鈍頭又正好覆蓋燒蝕層,任其燒蝕以耗散熱能(見燒蝕防熱)。
一個圓錐放在超音速氣流里(迎角為零),如M1足夠大時便產生一個附體的圓錐形的激波面(圖c )。氣流通過圓錐激波的變化與平面斜激波是一樣的。所不同的是氣流經過圓錐激波的突變之後還要繼續改變指向,速度繼續減小,最後才漸近地趨於與物面的斜角一致。也就是說,氣流在激波上指向折轉不夠,所以當半頂角相同時,圓錐所產生的圓錐激波較之二維翼型的激波為弱。
相關連線
海洋學相關知識(六)
海洋科學是研究海洋的自然現象、性質及其變化規律,以及與開發利用海洋有關的知識體系。下面讓我們來完善與海洋學相關的詞條,以此來更加深入的了解海洋學的相關知識。 |