數的幾何
正文
又稱幾何數論,套用幾何方法研究某些數論問題的一個數論分支。它的一類典型問題為:設 ƒ(x1,x2,…,xn)是實變數x1,x2, …, xn的實值函式,對於適當選取的整數u1,u2,…un,|ƒ(u1,u2,…un)|的值能有多小?例如,設![數的幾何](/img/f/5a9/ml2ZuM3XzETOxUDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLzEzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
,
![數的幾何](/img/8/497/ml2ZuM3X0UzM1UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL0UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
17~18世紀間,J.-L.拉格朗日和C.F.高斯等就已開始以幾何觀點研究二次型的算術性質。1891年,H.閔科夫斯基發表了數的幾何第一篇論文,並於1896年出版了《數的幾何學》一書。從此,數的幾何成為數論的一個獨立分支。
數的幾何是研究丟番圖逼近、代數數論的重要工具。
用Rn表示n維實歐幾里得空間,如果
![數的幾何](/img/2/27a/ml2ZuM3X2kDN2UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL2kzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![數的幾何](/img/b/cfc/ml2ZuM3X4AzM3UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL4AzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![數的幾何](/img/6/c7c/ml2ZuM3X3YDM5UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![數的幾何](/img/6/df9/ml2ZuM3XzQTMwYDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLzQzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![數的幾何](/img/6/c7c/ml2ZuM3X3YDM5UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![數的幾何](/img/3/0ca/ml2ZuM3X5cTMxYDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL5czLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![數的幾何](/img/6/c7c/ml2ZuM3X3YDM5UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![數的幾何](/img/6/c7c/ml2ZuM3X3YDM5UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![數的幾何](/img/6/c7c/ml2ZuM3X3YDM5UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![數的幾何](/img/6/c7c/ml2ZuM3X3YDM5UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![數的幾何](/img/6/c7c/ml2ZuM3X3YDM5UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![數的幾何](/img/6/c7c/ml2ZuM3X3YDM5UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![數的幾何](/img/6/c7c/ml2ZuM3X3YDM5UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
一個重要的對稱凸集,是由以下的一組實線性型定義的:
![數的幾何](/img/6/479/ml2ZuM3XyMDOzYDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLyMzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
閔科夫斯基研究了對稱凸集的基本性質,獲得數的幾何第一基本定理:如果
![數的幾何](/img/6/c7c/ml2ZuM3X3YDM5UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![數的幾何](/img/6/c7c/ml2ZuM3X3YDM5UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![數的幾何](/img/6/c7c/ml2ZuM3X3YDM5UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![數的幾何](/img/6/c7c/ml2ZuM3X3YDM5UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
這個定理套用於集(A),得到著名的閔科夫斯基線性型定理:如果正實數с1,с2,…,сn適合с1с2 … сn≥|det(αij)|,那么存在不同時為零的整數x1,x2,…,xn,滿足不等式組
。
![數的幾何](/img/d/b0c/ml2ZuM3X1kDN2YDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL1kzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![數的幾何](/img/7/612/ml2ZuM3X1QDN3YDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL1QzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
有時,需要考慮
![數的幾何](/img/6/c7c/ml2ZuM3X3YDM5UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![數的幾何](/img/6/c7c/ml2ZuM3X3YDM5UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![數的幾何](/img/6/c7c/ml2ZuM3X3YDM5UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![數的幾何](/img/6/47f/ml2ZuM3X2QDO4YDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL2QzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![數的幾何](/img/3/0ca/ml2ZuM3X5cTMxYDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL5czLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![數的幾何](/img/a/677/ml2ZuM3XzQDMxcDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzLzQzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
由F(尣)的性質可知,對每個i(1≤i≤n,存在最小的λ=λj,使
![數的幾何](/img/c/744/ml2ZuM3X5gjMycDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL5gzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![數的幾何](/img/6/c7c/ml2ZuM3X3YDM5UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
,
![數的幾何](/img/2/d60/ml2ZuM3X3MTM1cDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3MzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![數的幾何](/img/8/182/ml2ZuM3X3gzM2cDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3gzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
例如,對於超立方體|xj|≤1(1≤i≤n),λj=1(i=1,2,…,n),mj可取作單位矢(0,…,0,1,0,…,0)。
顯然,
![數的幾何](/img/4/e07/ml2ZuM3X1kDN3cDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL1kzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![數的幾何](/img/a/03d/ml2ZuM3X3MzN4cDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
閔科夫斯基進而得到數的幾何第二基本定理:設
![數的幾何](/img/6/c7c/ml2ZuM3X3YDM5UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![數的幾何](/img/6/c7c/ml2ZuM3X3YDM5UDN1QTNxgDM5ETMwADMwADMwADMwADMxAzL1EzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
。
參考書目
J.W.S.Cassels,An Introduction to the Geometry of Number,Springer-Verlag,Berlin,1959.