介紹
化學熱力學的核心理論有三個:所有的物質都具有能量,能量是守恆的,各種能量可以相互轉化;事物總是自發地趨向於平衡態;處於平衡態的物質系統可用幾個可觀測量描述。化學熱力學是建立在三個基本定律基礎上發展起來的。熱力學第一定律就是能量守恆和轉化定律,它是許多科學家實驗總結出來的。一般公認,邁爾於1842年首先提出普遍“力”(即現在所謂的能量)的轉化和守恆的概念。焦耳1840~1860年間用各種不同的機械生熱法,進行熱功當量測定,給能量守恆和轉化概念以堅實的實驗基礎,從而使熱力學第一定律得到科學界的公認。
熱力學第一定律給出了熱和功相互轉化的數量關係。為了提高熱機效率,1824年卡諾提出了著名的卡諾定理,他得到的結論是正確的,但他卻引用了錯誤的“熱質論”。為了進一步闡明卡諾定理,1850年克勞修斯提出熱力學第二定律,他認為:“不可能把熱從低溫物體傳到高溫物體而不引起其他變化”,相當於熱傳導過程的不可逆性。
1851年開爾文認為:“不可能從單一熱源取熱使之完全變為有用的功而不引起其他變化”,相當於摩擦生熱過程的不可逆性。除上述兩種說法外,熱力學第二定律還有幾種不同的敘述方式,它們之間是等效的。在研究化學反應時,需要確定熵的參考態。
1912年,能斯脫提出熱力學第三定律,即絕對溫度的零點是不可能達到的。其他科學家還提出過幾種不同表述方式,其中1911年普朗克的提法較為明確,即“與任何等溫可逆過程相聯繫的熵變,隨著溫度的趨近於零而趨近於零”。這個定律非常重要,為化學平衡提供了根本性原理。
吉布斯給出了熱力學原理的更為完美的表述形式,用幾個熱力學函式來描述系統的狀態,使化學變化和物理變化的描述更為方便和實用。他發表了著名的“相律”,對相平衡的研究起著重要的指導作用。但實際系統常常是開放的、非平衡的,所涉及的物理化學過程通常是不可逆的。
19世紀人們開始研究熱導擴散和電導等現象,但僅僅限於對近似平衡的非平衡狀態和過程的研究。20世紀60年代,開始對遠離平衡的非平衡狀態和過程的研究以後,熱力學理論取得了重大的進展。昂薩格和普里戈金等都曾作出傑出的貢獻。
熱力學三個基本定律是無數經驗的總結,至今尚未發現熱力學理論與事實不符合的情形,因此它們具有高度的可靠性。熱力學理論對一切物質系統都適用,具有普遍性的優點。這些理論是根據巨觀現象得出的,因此稱為巨觀理論,也叫唯象理論。
熱力學所根據的基本規律就是熱力學第一定律、第二定律和第三定律,從這些定律出發,用數學方法加以演繹推論,就可得到描寫物質體系平衡的熱力學函式及函式間的相互關係,再結合必要的熱化學數據,解決化學變化、物理變化的方向和限度,這就是化學熱力學的基本內容和方法。
經典熱力學是巨觀理論,它不依賴於物質的微觀結構。分子結構理論的發展和變化,都無需修改熱力學概念和理論,因此不能只從經典熱力學獲得分子層次的任何信息。並且它只處理平衡問題而不涉及這種平衡狀態是怎樣達到的,只需要知道系統的起始狀態和終止狀態就可得到可靠的結果,不涉及變化的細節,所以不能解決過程的速率問題。欲解決上述兩個局限性問題,需要其其它學科如化學統計力學、化學動力學等的幫助。熱力學理論已經解決了物質的平衡性質問題,但是關於非平衡現象,現有的理論還是初步的,有待進一步研究;熱力學在具體問題中的實際套用,仍有廣闊的發展前途。
利用熱力學定律研究化學反應的分支學科。主要包括熱化學、化學平衡、溶液理論等,此外如電化學、表面化學、相平衡等也屬於化學熱力學範圍。在研究化學反應時,需要知道反應的始態及終態的某些基本熱力學性質(如內能、焓、熵、自由能、自由焓等)一般地說,如果始態(反應物)和終態(生成物)相對於適當參考態的焓和熵是已知的,則用熱力學方法研究化學反應的條件就具備了。
熱化學 主要內容是用熱力學第一定律研究“化學反應熱”方面的問題。在化學反應中,一摩爾物質的變化(指主要的生成物或反應物)所吸收的熱量名為化學反應熱,簡稱為反應熱。根據熱力學第一定律知道,在定溫、定壓(或定容)下發生的化學反應,其反應熱Qp(或Qp)等於反應過程焓(或內能)的變化ΔH(或ΔU)。
參考書目
傅鷹編著:《化學熱力學導論》,科學出版社,北京,1963。
S.Glasstone,ThermodynamicsforChemists,D.VanNostrandCo。,普林斯頓,1958年。
G.W.Castellan,PhysicalChemistry,阿狄森-維斯利,東京1964年。
M.L.Lakhanpal,FundamentalsofChemicalThermodynamics,McGraw小山,新德里,1983年。
物理學知識2
物理學(PHYSICS)是研究物質世界最基本的結構、最普遍的相互作用、最一般的運動規律及所使用的實驗手段和思維方法的自然科學,簡稱物理。物理學是人們對無生命自然界中物質的轉變的知識做出規律性的總結。 |