定義
![線性組合](/img/4/886/wZwpmL3AjNxUTM3QzM3UzM1UTM1QDN5MjM5ADMwAjMwUzL0MzL2EzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![線性組合](/img/2/eed/wZwpmLyAzM1cjNzQTO2UzM1UTM1QDN5MjM5ADMwAjMwUzL0kzL4IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![線性組合](/img/5/774/wZwpmLyYjM3QzM5YTO2UzM1UTM1QDN5MjM5ADMwAjMwUzL2kzLyczLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
定義一個包含k個實數變數的集合 ,且假設已知一個k個實數權重集合 。我們定義 。s變數是對變數x的加權線性”混合”。因此,將s定義為變數的線性組合。
![線性組合](/img/4/913/wZwpmLyEjM0IzM4YzMwEDN0UTMyITNykTO0EDMwAjMwUzL2MzLygzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
可以將線性組合的概念推廣到矢量中。定義每個 是一個矢量,因此,它們的線性組合 s也是一個矢量。當然.每個矢量必須有相同數量的元素。請注意, s的每個分量都是一個由被組合矢量的相對應元素構成的線性組合。
標量的線性組合
定義標量為2,4,1,5,權重為0.1,0.4,0.25,0.25。求其線性組合s。
![線性組合](/img/9/451/wZwpmL0IzN0ITN5ITO2UzM1UTM1QDN5MjM5ADMwAjMwUzLykzLzUzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
解:線性組合
矢量的線性組合
向量的線性組合屬於矢量的線性組合,下面會詳細介紹。
定義矢量為[2 4 1 5],[3 5 1 2],[5 6 2 1],[9 0 1 3]·權重為0.1,0.4,0.25,0.25。求其線性組合s。
解:線性組合
![線性組合](/img/6/112/wZwpmL4QTN0MTO0YTN2UzM1UTM1QDN5MjM5ADMwAjMwUzL2UzL2IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![線性組合](/img/e/3b0/wZwpmLwcDN1gDO4MDO2UzM1UTM1QDN5MjM5ADMwAjMwUzLzgzL1MzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
s的第一個元素是。
![線性組合](/img/2/bda/wZwpmLzQDM1UDNxEjN2UzM1UTM1QDN5MjM5ADMwAjMwUzLxYzL0czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
相應地,其他元素分別是3.9,1.25和2.3。因此。
向量組的線性組合
![線性組合](/img/1/8bf/wZwpmL2ITO3cDN5QzN2UzM1UTM1QDN5MjM5ADMwAjMwUzL0czL1QzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![線性組合](/img/7/0a2/wZwpmLyEDMyUDN5MTO2UzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL4EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![線性組合](/img/a/86a/wZwpmLwMDN5EjNwUzN2UzM1UTM1QDN5MjM5ADMwAjMwUzL1czL2YzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![線性組合](/img/c/f6d/wZwpmL4IDMxkjN2cDO2UzM1UTM1QDN5MjM5ADMwAjMwUzL3gzLwMzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![線性組合](/img/3/3f2/wZwpmL2ETOwgDO0ADN3UzM1UTM1QDN5MjM5ADMwAjMwUzLwQzLxgzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![線性組合](/img/0/b11/wZwpmL1YDM4YzM5UTO2UzM1UTM1QDN5MjM5ADMwAjMwUzL1kzLzQzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![線性組合](/img/2/a90/wZwpmLxQDN1cjM5EDM3UzM1UTM1QDN5MjM5ADMwAjMwUzLxAzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![線性組合](/img/d/944/wZwpmL2YjMzkzN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0AzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![線性組合](/img/7/0a2/wZwpmLyEDMyUDN5MTO2UzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL4EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![線性組合](/img/9/84a/wZwpmLwQTN4gzM2czNwMzM1UTM1QDN5MjM5ADMwAjMwUzL3czL2EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![線性組合](/img/c/f6d/wZwpmL4IDMxkjN2cDO2UzM1UTM1QDN5MjM5ADMwAjMwUzL3gzLwMzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![線性組合](/img/9/84a/wZwpmLwQTN4gzM2czNwMzM1UTM1QDN5MjM5ADMwAjMwUzL3czL2EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![線性組合](/img/0/b11/wZwpmL1YDM4YzM5UTO2UzM1UTM1QDN5MjM5ADMwAjMwUzL1kzLzQzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
1.任一n維向量 α= ,可由n維單位向量組 = , = ,......, = 線性表示,表達式為 α= + +......+ .
![線性組合](/img/8/ee0/wZwpmLwMjN2czN5YjN5ADN0UTMyITNykTO0EDMwAjMwUzL2YzL0IzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![線性組合](/img/d/944/wZwpmL2YjMzkzN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0AzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![線性組合](/img/9/84a/wZwpmLwQTN4gzM2czNwMzM1UTM1QDN5MjM5ADMwAjMwUzL3czL2EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![線性組合](/img/9/d01/wZwpmL4IjN0YDNzkTN2UzM1UTM1QDN5MjM5ADMwAjMwUzL5UzLxYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![線性組合](/img/8/ee0/wZwpmLwMjN2czN5YjN5ADN0UTMyITNykTO0EDMwAjMwUzL2YzL0IzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![線性組合](/img/d/944/wZwpmL2YjMzkzN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0AzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![線性組合](/img/9/84a/wZwpmLwQTN4gzM2czNwMzM1UTM1QDN5MjM5ADMwAjMwUzL3czL2EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![線性組合](/img/9/d01/wZwpmL4IjN0YDNzkTN2UzM1UTM1QDN5MjM5ADMwAjMwUzL5UzLxYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![線性組合](/img/8/ee0/wZwpmLwMjN2czN5YjN5ADN0UTMyITNykTO0EDMwAjMwUzL2YzL0IzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![線性組合](/img/d/944/wZwpmL2YjMzkzN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0AzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![線性組合](/img/9/84a/wZwpmLwQTN4gzM2czNwMzM1UTM1QDN5MjM5ADMwAjMwUzL3czL2EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![線性組合](/img/9/d01/wZwpmL4IjN0YDNzkTN2UzM1UTM1QDN5MjM5ADMwAjMwUzL5UzLxYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![線性組合](/img/8/ee0/wZwpmLwMjN2czN5YjN5ADN0UTMyITNykTO0EDMwAjMwUzL2YzL0IzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![線性組合](/img/d/944/wZwpmL2YjMzkzN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0AzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![線性組合](/img/9/84a/wZwpmLwQTN4gzM2czNwMzM1UTM1QDN5MjM5ADMwAjMwUzL3czL2EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![線性組合](/img/9/d01/wZwpmL4IjN0YDNzkTN2UzM1UTM1QDN5MjM5ADMwAjMwUzL5UzLxYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
2.設 , , ,…, 為一組n維向量.若存在一組數k₁,k₂,k₃,...,ks使得 =k₁ +k₂ +,…,+ks 為成立,則稱向量 是向量組 , ,…, 的線性組合,或稱向量 可由向量組 , ,…, 線性表示.