簡介
鋰離子電池(Li-ion,Lithium Ion Battery):鋰離子電池具有重量輕、容量大、無記憶效應等優點,因而得到了普遍套用——現在的許多數碼設備都採用了鋰離子電池作電源,儘管其價格相對來說比較昂貴。鋰離子電池的能量密度很高,它的容量是同重量的鎳氫電池的1.5~2倍,而且具有很低的自放電率。此外,鋰離子電池幾乎沒有“記憶效應”以及不含有毒物質等優點也是它廣泛套用的重要原因。原理結構
鋰系電池分為鋰電池和鋰離子電池。目前手機和筆記本電腦使用的都是鋰離子電池,通常人們俗稱其為鋰電池。目前手機等使用的鋰離子電池,而真正的鋰電池由於危險性大,沒有套用於日常電子產品。鋰離子電池以碳素材料為負極,以含鋰的化合物作正極,沒有金屬鋰存在,只有鋰離子,這就是鋰離子電池。鋰離子電池是指以鋰離子嵌入化合物為正極材料電池的總稱。鋰離子電池的充放電過程,就是鋰離子的嵌入和脫嵌過程。在鋰離子的嵌入和脫嵌過程中,同時伴隨著與鋰離子等當量電子的嵌入和脫嵌(習慣上正極用嵌入或脫嵌表示,而負極用插入或脫插表示)。在充放電過程中,鋰離子在正、負極之間往返嵌入/脫嵌和插入/脫插,被形象地稱為“搖椅電池”。
鋰離子電池能量密度大,平均輸出電壓高。自放電小,每月在10%以下。沒有記憶效應。工作溫度範圍寬為-20℃~60℃。循環性能優越、可快速充放電、充電效率高達100%,而且輸出功率大。使用壽命長。沒有環境污染,被稱為綠色電池。
充電是電池重複使用的重要步驟,鋰離子電池的充電過程分為兩個階段:恆流快充階段(指示燈呈紅色或黃色)和恆壓電流遞減階段(指示燈呈綠色)。恆流快充階段,電池電壓逐步升高到電池的標準電壓,隨後在控制晶片下轉入恆壓階段,電壓不再升高以確保不會過充,電流則隨著電池電量的上升逐步減弱到0,而最終完成充電。電量統計晶片通過記錄放電曲線可以抽樣計算出電池的電量。鋰離子電池在多次使用後,放電曲線會發生改變,鋰離子電池雖然不存在記憶效應,但是充電不當會嚴重影響電池性能。
鋰離子電池過度充放電會對正負極造成永久性損壞。過度放電導致負極碳片層結構出現塌陷,而塌陷會造成充電過程中鋰離子無法插入;過度充電使過多的鋰離子插入負極碳結構,而造成其中部分鋰離子再也無法釋放出來。
充電量等於充電電流乘以充電時間,在充電控制電壓一定的情況下,充電電流越大(充電速度越快),充電電量越小。電池充電速度過快和終止電壓控制點不當,同樣會造成電池容量不足,實際是電池的部分電極活性物質沒有得到充分反應就停止充電,這種充電不足的現象隨著循環次數的增加而加劇。
歷史
歷史經歷
1970年,埃克森的M.S.Whittingham採用硫化鈦作為正極材料,金屬鋰作為負極材料,製成首個鋰電池。鋰電池的正極材料是二氧化錳或亞硫醯氯,負極是鋰。電池組裝完成後電池即有電壓,不需充電。鋰離子電池(Li-ionBatteries)是鋰電池發展而來。舉例來講,以前照相機里用的扣式電池就屬於鋰電池。這種電池也可以充電,但循環性能不好,在充放電循環過程中容易形成鋰結晶,造成電池內部短路,所以一般情況下這種電池是禁止充電的。1982年伊利諾伊理工大學(theIllinoisInstituteofTechnology)的R.R.Agarwal和J.R.Selman發現鋰離子具有嵌入石墨的特性,此過程是快速的,並且可逆。與此同時,採用金屬鋰製成的鋰電池,其安全隱患備受關注,因此人們嘗試利用鋰離子嵌入石墨的特性製作充電電池。首個可用的鋰離子石墨電極由貝爾實驗室試製成功。
1983年M.Thackeray、J.Goodenough等人發現錳尖晶石是優良的正極材料,具有低價、穩定和優良的導電、導鋰性能。其分解溫度高,且氧化性遠低於鈷酸鋰,即使出現短路、過充電,也能夠避免了燃燒、爆炸的危險。
1989年,A.Manthiram和J.Goodenough發現採用聚合陰離子的正極將產生更高的電壓。
1992年日本索尼公司發明了以炭材料為負極,以含鋰的化合物作正極的鋰電池,在充放電過程中,沒有金屬鋰存在,只有鋰離子,這就是鋰離子電池。隨後,鋰離子電池革新了消費電子產品的面貌。此類以鈷酸鋰作為正極材料的電池,至今仍是便攜電子器件的主要電源。
1996年Padhi和Goodenough發現具有橄欖石結構的磷酸鹽,如磷酸鐵鋰(LiFePO4),比傳統的正極材料更具安全性,尤其耐高溫,耐過充電性能遠超過傳統鋰離子電池材料。因此已成為當前主流的大電流放電的動力鋰電池的正極材料。
歷史過程
早期鋰電池鋰離子電池(Li-ionBatteries)是鋰電池發展而來。所以在介紹Li-ion之前,先介紹鋰電池。舉例來講,以前照相機里用的扣式電池就屬於鋰電池。鋰電池的正極材料是二氧化錳或亞硫醯氯,負極是鋰。電池組裝完成後電池即有電壓,不需充電.這種電池也可以充電,但循環性能不好,在充放電循環過程中,容易形成鋰枝晶,造成電池內部短路,所以一般情況下這種電池是禁止充電的。
炭材料鋰電池後來,日本索尼公司發明了以炭材料為負極,以含鋰的化合物作正極的鋰電池,在充放電過程中,沒有金屬鋰存在,只有鋰離子,這就是鋰離子電池。當對電池進行充電時,電池的正極上有鋰離子生成,生成的鋰離子經過電解液運動到負極。而作為負極的碳呈層狀結構,它有很多微孔,達到負極的鋰離子就嵌入到碳層的微孔中,嵌入的鋰離子越多,充電容量越高。同樣,當對電池進行放電時(即我們使用電池的過程),嵌在負極碳層中的鋰離子脫出,又運動回正極。回正極的鋰離子越多,放電容量越高。
搖椅式電池通常所說的電池容量指的就是放電容量。在Li-ion的充放電過程中,鋰離子處於從正極→負極→正極的運動狀態。Li-ionBatteries就像一把搖椅,搖椅的兩端為電池的兩極,而鋰離子就象運動員一樣在搖椅來回奔跑。所以Li-ionBatteries又叫搖椅式電池。
特點
一是綠色環保電池迅猛發展,包括鋰離子蓄電池、氫鎳電池等;
二是一次電池向蓄電池轉化,這符合可持續發展戰略;
三是電池進一步向小、輕、薄方向發展。
組成部分
鋼殼/鋁殼系列
(1)電池上下蓋
(2)正極——活性物質一般為氧化鋰鈷
(3)隔膜——一種特殊的複合膜
(4)負極——活性物質為碳
(5)有機電解液
(6)電池殼(分為鋼殼和鋁殼兩種)
軟包裝系列
(1)正極——活性物質一般為氧化鋰鈷(2)隔膜——PP或者PE複合膜
(3)負極——活性物質為碳
(4)有機電解液
(5)電池殼——鋁塑複合膜
鋼殼/鋁殼/圓柱/軟包裝系列
(1)正極——活性物質一般為錳酸鋰或者鈷酸鋰,鎳鈷錳酸鋰材料,電動腳踏車則普遍用鎳鈷錳酸鋰(俗稱三元)或者三元+少量錳酸鋰,純的錳酸鋰和磷酸鐵鋰則由於體積大、性能不好或成本高而逐漸淡出。導電集流體使用厚度10--20微米的電解鋁箔。
(2)隔膜——一種經特殊成型的高分子薄膜,薄膜有微孔結構,可以讓鋰離子自由通過,而電子不能通過。
(3)負極——活性物質為石墨,或近似石墨結構的碳,導電集流體使用厚度7-15微米的電解銅箔。
(4)有機電解液——溶解有六氟磷酸鋰的碳酸酯類溶劑,聚合物的則使用凝膠狀電解液。
(5)電池外殼——分為鋼殼(方型很少使用)、鋁殼、鍍鎳鐵殼(圓柱電池使用)、鋁塑膜(軟包裝)等,還有電池的蓋帽,也是電池的正負極引出端。
工作原理
當對電池進行充電時,電池的正極上有鋰離子生成,生成的鋰離子經過電解液運動到負極。而作為負極的碳呈層狀結構,它有很多微孔,達到負極的鋰離子就嵌入到碳層的微孔中,嵌入的鋰離子越多,充電容量越高。同樣,當對電池進行放電時(即我們使用電池的過程),嵌在負極碳層中的鋰離子脫出,又運動回正極。回正極的鋰離子越多,放電容量越高。離子電池原理圖(如右圖)
一般鋰電池充電電流設定在0.2C至1C之間,電流越大,充電越快,同時電池發熱也越大。而且,過大的電流充電,容量不夠滿,因為電池內部的電化學反應需要時間。就跟倒啤酒一樣,倒太快的話會產生泡沫,反而不滿。
對電池來說,正常使用就是放電的過程。鋰電池放電需要注意幾點:
第一,放電電流不能過大,過大的電流導致電池內部發熱,有可能會造成永久性的損害。在手機上,這個倒是沒有問題的,可以不考慮。
第二,絕對不能過放電!鋰電池最怕過放電,一旦放電電壓低於2.7V,將可能導致電池報廢。好在手機電池內部都已經裝了保護電路,電壓還沒低到損壞電池的程度,保護電路就會起作用,停止放電。從圖上可以看出,電池放電電流越大,放電容量越小,電壓下降更快。
化學解析
和所有化學電池一樣,鋰離子電池也由三個部分組成:正極、負極和電解質。電極材料都是鋰離子可以嵌入(插入)/脫嵌(脫插)的。
正極
正極材料:如上文所述,可選的正極材料很多,目前主流產品多採用鋰鐵磷酸鹽。不同的正極材料對照:
正極反應:放電時鋰離子嵌入,充電時鋰離子脫嵌。充電時:LiFePO4→Li1-xFePO4+xLi+xe放電時:Li1-xFePO4+xLi+xe→LiFePO4
負極
負極材料:多採用石墨。新的研究發現鈦酸鹽可能是更好的材料。負極反應:放電時鋰離子脫插,充電時鋰離子插入。充電時:xLi+xe+6C→LixC6放電時:LixC6→xLi+xe+6C
大體分為以下幾種:
第一種是碳負極材料:目前已經實際用於鋰離子電池的負極材料基本上都是碳素材料,如人工石墨、天然石墨、中間相碳微球、石油焦、碳纖維、熱解樹脂碳等。
第二種是錫基負極材料:錫基負極材料可分為錫的氧化物和錫基複合氧化物兩種。氧化物是指各種價態金屬錫的氧化物。目前沒有商業化產品。
第三種是含鋰過渡金屬氮化物負極材料,目前也沒有商業化產品。
第四種是合金類負極材料:包括錫基合金、矽基合金、鍺基合金、鋁基合金、銻基合金、鎂基合金和其它合金,目前也沒有商業化產品。
第五種是納米級負極材料:納米碳管、納米合金材料。
第六種納米材料是納米氧化物材料:目前合肥翔正化學科技有限公司根據2009年鋰電池新能源行業的市場發展最新動向,諸多公司已經開始使用納米氧化鈦和納米氧化矽添加在以前傳統的石墨,錫氧化物,納米碳管裡面,極大的提高鋰電池的沖放電量和充放電次數。
電解質溶液
1.溶質:常採用鋰鹽,如高氯酸鋰(LiClO4)、六氟磷酸鋰(LiPF6)、四氟硼酸鋰(LiBF?)。
2.溶劑:由於電池的工作電壓遠高於水的分解電壓,因此鋰離子電池常採用有機溶劑,如乙醚、乙烯碳酸酯、丙烯碳酸酯、二乙基碳酸酯等。有機溶劑常常在充電時破壞石墨的結構,導致其剝脫,並在其表面形成固體電解質膜(solidelectrolyteinterphase,SEI)導致電極鈍化。有機溶劑還帶來易燃、易爆等安全性問題。
安全隱患
鋰離子電池的安全性問題,不僅與池材料本身性質有關,而且與電池製備技術和使用有關。手機電池頻頻發生爆炸事件,一方面是由於保護電路失效,但更重要的是在於材料方面並沒有根本的解決問題。鈷酸鋰正極活性材料在小電芯方面是很成熟的體系,但是充滿電後,仍舊有大量的鋰離子留在正極,當過充時,殘留在正極的鋰離子將會湧向負極,在負極上形成枝晶是採用鈷酸鋰材料的電池過充時必然的結果,甚至在正常充放電過程中,也有可能會有多餘的鋰離子游離到負極形成枝晶,鈷酸鋰材料的理論比能量是超過每克270毫安時的,但為保證其循環性能,實際使用容量只有理論容量的一半。在使用過程中,由於某種原因(如管理系統損壞)而導致電池充電電壓過高,正極中剩餘的一部分鋰就會脫出,經電解液到負極表面以金屬鋰的形式沉積形成枝晶。枝晶刺穿隔膜,形成內部短路。
電解液的主要成分為碳酸酯,閃點很低,沸點也較低,在一定條件下會燃燒甚至爆炸。如電池出現過熱,會導致電解液中的碳酸酯被氧化和還原,產生大量氣體和更多的熱,如缺少安全閥或者氣體來不及通過安全閥釋放,電池內壓便會急劇上升而引起爆炸。
聚合物電解質鋰離子電池並沒有從根本上解決安全性問題,同樣使用鈷酸鋰和有機電解液,而且電解液為膠狀,不易泄漏,將會發生更猛烈的燃燒,燃燒是聚合物電池安全性最大的問題。
在使用方面也存在一些問題,電池發生外部短路或內部短路將產生幾百安培的過大電流。外部短路時電池瞬間大電流放電,在內阻上消耗大量能量,產生巨大熱量。內部短路形成大電流,溫度上升導致隔膜熔化,短路面積擴大,進而形成惡性循環。
鋰離子電池為達到單只電芯 3~4.2V的高工作電壓,必須採取分解電壓大於2V的有機電解液,而採用有機電解液在大電流、高溫的條件下會被電解,電解產生氣體,導致內部壓力升高,嚴重會衝破殼體。
過充可能會析出金屬鋰,在殼體破裂的情況下,與空氣直接接觸,導致燃燒,同時引燃電解液,發生強烈火焰,氣體急速膨脹,發生爆炸。
另外,對於手機鋰離子電池,由於使用不當,如擠壓、衝擊和進水等導致電池膨脹、變形和開裂等,這些都會導致電池短路,在放電或充電過程放熱引起爆炸。
安全性設計
為了避免因使用不當造成電池過放電或者過充電,在單體鋰離子電池內設有三重保護機構。一是採用開關元件,當電池內的溫度上升時,它的阻值隨之上升,當溫度過高時,會自動停止供電;二是選擇適當的隔板材料,當溫度上升到一定數值時,隔板上的微米級微孔會自動溶解掉,從而使鋰離子不能通過,電池內部反應停止;三是設定安全閥(就是電池頂部的放氣孔),電池內部壓力上升到一定數值時,安全閥自動打開,保證電池的使用安全性。
有時,電池本身雖然有安全控制措施,但是因為某些原因造成控制失靈,缺少安全閥或者氣體來不及通過安全閥釋放,電池內壓便會急劇上升而引起爆炸。
一般情況下,鋰離子電池儲存的總能量和其安全性是成反比的,隨著電池容量的增加,電池體積也在增加,其散熱性能變差,出事故的可能性將大幅增加。對於手機用鋰離子電池,基本要求是發生安全事故的機率要小於百萬分之一,這也是社會公眾所能接受的最低標準。而對於大容量鋰離子電池,特別是汽車等用大容量鋰離子電池,採用強制散熱尤為重要。
選擇更安全的電極材料,選擇錳酸鋰材料,在分子結構方面保證了在滿電狀態,正極的鋰離子已經完全嵌入到負極炭孔中,從根本上避免了枝晶的產生。同時錳酸鋰穩固的結構,使其氧化性能遠遠低於鈷酸鋰,分解溫度超過鈷酸鋰100℃,即使由於外力發生內部短路(針刺),外部短路,過充電時,也完全能夠避免了由於析出金屬鋰引發燃燒、爆炸的危險。
另外,採用錳酸鋰材料還可以大幅度降低成本。
提高現有安全控制技術的性能,首先要提高鋰離子電池芯的安全性能,這對大容量電池尤為重要。選擇熱關閉性能好的隔膜,隔膜的作用是在隔離電池正負極的同時,允許鋰離子的通過。當溫度升高時,在隔膜熔化前進行關閉,從而使內阻上升至2000歐姆,讓內部反應停止下來。
當內部壓力或溫度達到預置的標準時,防爆閥將打開,開始進行卸壓,以防止內部氣體積累過多,發生形變,最終導致殼體爆裂。
提高控制靈敏度、選擇更靈敏的控制參數和採用多個參數的聯合控制(這對於大容量電池尤為重要)。對於大容量鋰離子電池組是串/並聯的多個電芯組成,如筆記本電腦的電壓為10V以上,容量較大,一般採用3~4個單電池串聯就可以滿足電壓要求,然後再將2~3個串聯的電池組並聯,以保證較大的容量。
大容量電池組本身必須設定較為完善的保護功能,還應考慮兩種電路基板模組:保護電路基板(Protection Board PCB)模組及Smart Battery Gauge Board模組。整套的電池保護設計包括:第1級保護IC(防止電池過充、過放、短路),第2級保護IC(防止第2次過壓)、保險絲、LED指示、溫度調節等部件。
在多級保護機制下,即使是在電源充電器、筆記本電腦出現異常的情況下,筆記本電池也只能轉為自動保護狀態,如果情況不嚴重,往往在重新插拔後還能正常工作,不會發生爆炸。筆記本電腦和手機使用的鋰離子電池所採用的底層技術是不安全的,需要考慮更安全的結構。
種類
常用的有鋰-二氧化錳電池、鋰—亞硫醯氯電池及鋰和其它化合物電池。
鋰-二氧化錳電池(LiMnO2)
鋰-二氧化錳電池是一種以鋰為陽極、以二氧化錳為陰極,並採用有機電解液的一次性電池。該電池的主要特點是電池電壓高,額定電壓為3V(是一般鹼性電池的2倍);終止放電電壓為2V;比能量大(見上面舉的例子);放電電壓穩定可靠;有較好的儲存性能(儲存時間3年以上)、自放電率低(年自放電率≤2%);工作溫度範圍-20℃~+60℃。
該電池可以做成不同的外形以滿足不同要求,它有長方形、圓柱形及紐扣形(扣式)。
可充電鋰離子電池
可充電鋰離子電池是手機中套用最廣泛的電池,但它較為“嬌氣”,在使用中不可過充、過放(會損壞電池或使之報廢)。因此,在電池上有保護元器件或保護電路以防止昂貴的電池損壞。 鋰離子電池充電要求很高,要保證終止電壓精度在1%之內,目前各大半導體器件廠已開發出多種鋰離子電池充電的IC,以保證安全、可靠、快速地充電。
現在手機已十分普遍,手機中一部分是鎳氫電池,但靈巧型的手機則是鋰離子電池。正確地使用鋰離子電池對延長電池壽命是十分重要的。鋰離子電池是目前套用最為廣泛的鋰電池,它根據不同的電子產品的要求可以做成扁平長方形、圓柱形、長方形及扣式,並且有由幾個電池串聯在一起組成的電池組。 鋰離子電池的額定電壓為3.6V(有的產品為3.7V)。充滿電時的終止充電電壓與電池陽極材料有關:陽極材料為石墨的4.2V;陽極材料為焦炭的4.1V。不同陽極材料的內阻也不同,焦炭陽極的內阻略大,其放電曲線也略有差別,如圖1所示。一般稱為4.1V鋰離子電池及4.2V鋰離子電池。現在使用的大部分是4.2V的,鋰離子電池的終止放電電壓為2.5V~2.75V(電池廠給出工作電壓範圍或給出終止放電電壓,各參數略有不同)。低於終止放電電壓繼續放電稱為過放,過放對電池會有損害。
鋰離子電池不適合用作大電流放電,過大電流放電時會降低放電時間(內部會產生較高的溫度而損耗能量)。因此電池生產工廠給出最大放電電流,在使用中應小於最大放電電流。 鋰離子電池對溫度有一定要求,工廠給出了充電溫度範圍、放電溫度範圍及保存溫度範圍。 鋰離子電池對充電的要求是很高的,它要求精密的充電電路以保證充電的安全。終止充電電壓精度允差為額定值的±1%(例如:充4.2V的鋰離子電池,其允差為±0.042V),過壓充電會造成鋰離子電池永久性損壞。鋰離子電池充電電流應根據電池生產廠的建議,並要求有限流電路以免發生過流(過熱)。一般常用的充電率為0.25C~1C(C是電池的容量,如C=800mAh,1C充電率即充電電流為800mA)。在大電流充電時往往要檢測電池溫度,以防止過熱損壞電池或產生爆炸。
鋰離子電池充電分為兩個階段:先恆流充電,到接近終止電壓時改為恆壓充電,其充電特性如圖2所示。這是一種800mAh容量的電池,其終止充電電壓為4.2V。電池以800mA(充電率為1C)恆流充電,開始時電池電壓以較大的斜率升壓,當電池電壓接近4.2V時,改成4.2V恆壓充電,電流漸降,電壓變化不大,到充電電流降為1/10C(約80mA)時,認為接近充滿,可以終止充電(有的充電器到1/10C後啟動定時器,過一定時間後結束充電)。 鋰離子電池在充電或放電過程中若發生過充、過放或過流時,會造成電池的損壞或降低使用壽命。
優點缺點
優點
鋰離子電池(Li-ion,Lithium Ion Battery):鋰離子電池具有重量輕、容量大、無記憶效應等優點,因而得到了普遍套用——現在的許多數碼設備都採用了鋰離子電池作電源,儘管其價格相對來說比較昂貴。鋰離子電池的能量密度很高,它的容量是同重量的鎳氫電池的1.5~2倍,而且具有很低的自放電率。此外,鋰離子電池幾乎沒有“記憶效應”以及不含有毒物質等優點也是它廣泛套用的重要原因。
另外請注意鋰電池外部一般標有英文7.2V lithiumion battery(鋰電池)或7.2V lithium secondary battery(鋰二次電池)、7.2V lithiumion rechargeable battery(充電鋰電池),所以用戶在購買電池時一定要看清電池塊外表的標誌,防止因為沒有看清電池類型而將鎘鎳、氫鎳電池誤認為鋰電池。
無記憶效應大大方便了手機用戶,用戶不必在每次充電時都先放電再充電,而可以隨心所欲的隨時對手機充電。
缺點
鋰電池的缺點是價格昂貴,所以目前尚不能普遍套用,主要套用於掌上計算機、PDA、通信設備、照相機、衛星、飛彈、魚雷、儀器等。隨著技術的發展、工藝的改進及生產量的增加,鋰電池的價格將會不斷地下降,套用上也會更普遍。
注意事項
鋰離子電池套用注意事項除與上述不可充電的鋰電池相同外,在充電方面還應注意以下幾點:
1. 鋰離子電池有4.1V及4.2V終止充電的不同品種,因此因此在充電時注意的是4.1V的電池不能用4.2V的充電器充電,否則會有過充的危險(4.1V與4.2V的充電器用的充電器IC是不同的!)。
2. 對電池充電時,其環境溫度不能超過產品特性表中所列的溫度範圍。
3. 不能反向充電。
4. 不能用充鎳鎘電池的充電器(充三節鎳鎘電池的)來充鋰離子電池(雖然額定電壓一樣,都是3.6V),但充電方式不同,容易造成過充。
在放電方面應注意以下幾點:
1. 鋰離子電池放電電流不能超過產品特性表中給出最大放電電流。放電電流較大時,會產生較高的溫度(損耗能量),減少放電時間,若電池中無保護元件會產生過熱而損壞電池。
2. 不同溫度下放電曲線是不同的,如圖5所示。從圖中可以看出,在不同的溫度下,其放電電壓及放電時間也不同。在-20℃放電時情況最差。
在貯存方面:
1. 電池若長期貯存,要保持在50%放電態。
2. 電池應保存在低溫、乾燥壞境中。
3. 要遠離熱源,也不要置於陽光直射的地方。
電池使用
新電池激活
鋰離子電池出廠前,廠家都進行了激活處理,並進行了預充電,因此鋰離子電池均有餘電,不用激活,鋰離子電池按照調整期時間充電,這種調整期需進行3~5次完全充放電。
新電池充電
在使用鋰電池中應注意的是,電池放置一段時間後則進入休眠狀態,此時容量低於正常值,使用時間亦隨之縮短。但鋰電池很容易激活,只要經過3—5次正常的充放電循環就可激活電池,恢復正常容量。由於鋰電池本身的特性,決定了它幾乎沒有記憶效應。因此用戶手機中的新鋰電池在激活過程中,是不需要特別的方法和設備的。不僅理論上是如此,從我自己的實踐來看,從一開始就採用標準方法充電這種“自然激活”方式是最好的。
對於鋰電池的“激活”問題,眾多的說法是:充電時間一定要超過12小時,反覆做三次,以便激活電池。這種“前三次充電要充12小時以上”的說法,明顯是從鎳電池(如鎳鎘和鎳氫)延續下來的說法。所以這種說法,可以說一開始就是誤傳。鋰電池和鎳電池的充放電特性有非常大的區別,而且可以非常明確的告訴大家,我所查閱過的所有嚴肅的正式技術資料都強調過充和過放電會對鋰電池、特別是液體鋰離子電池造成巨大的傷害。因而充電最好按照標準時間和標準方法充電,特別是不要進行超過12個小時的超長充電。
此外,鋰電池或充電器在電池充滿後都會自動停充,並不存在鎳電充電器所謂的持續10幾小時的“涓流”充電。也就是說,如果你的鋰電池在充滿後,放在充電器上也是白充。而我們誰都無法保證電池的充放電保護電路的特性永不變化和質量的萬無一失,所以你的電池將長期處在危險的邊緣徘徊。這也是我們反對長充電的另一個理由。
此外,不可忽視的另外一個方面就是鋰電池同樣也不適合過放電,過放電對鋰電池同樣也很不利。
使用中充電
經常可以見到這種說法,因為充放電的次數是有限的,所以應該將手機電池的電儘可能用光再充電。但是我找到一個關於鋰離子電池充放電循環的實驗表,關於循環壽命的數據列出如下:
循環壽命 (10%DOD):>1000次
循環壽命 (100%DOD):>200次
其中DOD是放電深度的英文縮寫。從表中可見,可充電次數和放電深度有關,10%DOD時的循環壽命要比100%DOD的要長很多。當然如果折合到實際充電的相對總容量:10%*1000=100,100%*200=200,後者的完全充放電還是要比較好一些,但前面網友的那個說法要做一些修正:在正常情況下,你應該有保留地按照電池剩餘電量用完再充的原則充電,但假如你的電池在你預計第2天不可能堅持整個白天的時候,就應該及時開始充電,當然你如果願意背著充電器到辦公室又當別論。
電池剩餘電量用完再充的原則並不是要你走向極端。和長充電一樣流傳甚廣的一個說法,就是“儘量把電池的電量用完”。這種做法其實只是鎳電池上的做法,目的是避免記憶效應發生,不幸的是它也在鋰電池上流傳之今。曾經有人因為手機電池電量過低的警告出現後,仍然不充電繼續使用一直用到自動關機的例子。結果這個例子中的手機在後來的充電及開機中均無反應,不得不送客服檢修。這其實就是由於電池因過度放電而導致電壓過低,以至於不具備正常的充電和開機條件造成的。
建議手機電池的電量保持在滿格的狀態,當電量不滿的時候就開始充電,2-3小時以內為宜。
鋰離子電池按電解液分可以分成液態鋰離子電池和聚合物鋰離子電池,聚合物鋰離子電池的電解液是膠體,不會流動,所以不存在泄漏問題,更加安全。
鋰離子電池不要充得太滿也不要用到沒電。電池沒用完充電不會對電池造成傷害
保存方法
鋰原電池自放電很低,可保存3年之久,在冷藏的條件下保存,效果會更好。將鋰原電池存放在低溫的地方,不失是一個好方法。鋰離子電池在20℃下可儲存半年以上,這是由於它的自放電率很低,而且大部分容量可以恢復。
鋰電池存在的自放電現象,如果電池電壓在3.6V以下長時間保存,會導致電池過放電而破壞電池內部結構,減少電池壽命。因此長期保存的鋰電池應當每3~6個月補電一次,即充電到電壓為3.8~3.9V(鋰電池最佳儲存電壓為3.85V左右)為宜,不宜充滿。
鋰電池的套用溫度範圍很廣,在北方的冬天室外,仍然可以使用,但容量會降低很多,如果回到室溫的條件下,容量又可以恢復。
注意事項鋰原電池:與鋰離子電池不同,它不能充電,充電十分危險。其他注意事項,與鋰離子電池相當。
保養須知
充電時不得高於最大充電電壓,放電時不得低於最小工作電壓。
無論任何時間鋰離子電池都必須保持最小工作電壓以上,低電壓的過放或自放電反應會導致鋰離子活性物質分解破壞,並不一定可以還原。
鋰離子電池任何形式的過充都會導致電池性能受到嚴重破壞,甚至爆炸。鋰離子電池在充電過程必需避免對電池產生過充。
不要經常深放電、深充電。不過,每經歷約30個充電周期後,電量檢測晶片會自動執行一次深放電、深充電,以準確評估電池的狀態。
避免高溫,輕則縮短壽命,嚴重者可引發爆炸。如有條件可儲存於冰櫃。筆記本電腦如果正在使用交流電,請拔除鋰離子電池條,以免受到電腦產熱的影響。
避免凍結,但多數鋰離子電池電解質溶液的冰點在-40℃,不容易凍結。
如果長期不用,請以40%~60%的充電量儲存。電量過低時,可能因自放電導致過放。
由於鋰離子電池不使用時也會自然衰老,因此,購買時應根據實際需要量選購,不宜過多購入。
新發展
聚合物類
聚合物鋰離子電池是在液態鋰離子電池基礎上發展起來的,以導電材料為正極,碳材料為負極,電解質採用固態或凝膠態有機導電膜組成,並採用鋁塑膜做外包裝的最新一代可充鋰離子電池。由於性能的更加穩定,因此它也被視為液態鋰離子電池的更新換代產品。很多企業都在開發這種新型電池。
動力類
動力鋰離子電池:嚴格來說,動力鋰離子電池是指容量在3AH以上的鋰離子電池,則泛指能夠通過放電給設備、器械、模型、車輛等驅動的鋰離子電池,由於使用對象的不同,電池的容量可能達不到單位AH的級別。動力鋰離子電池分高容量和高功率兩種類型。高容量電池可用於電動工具、腳踏車、滑板車、礦燈、醫療器械等;高功率電池主要用於混合動力汽車及其它需要大電流充放電的場合。根據內部材料的不同,動力鋰離子電池相應地分為液態動力鋰離子電池和聚合物理離子動力電池兩種,統稱為動力鋰離子電池。
高性能類
為了突破傳統鋰電池的儲電瓶頸,研製一種能在很小的儲電單元內儲存更多電力的全新鐵碳儲電材料。但是此前這種材料的明顯缺點是充電周期不穩定,在電池多次充放電後儲電能力明顯下降。為此,改用一種新的合成方法。他們用幾種原始材料與一種鋰鹽混合併加熱,由此生成了一種帶有含碳納米管的全新納米結構材料。這種方法在納米尺度材料上一舉創建了儲電單元和導電電路。目前這種穩定的鐵碳材料的儲電能力已達到現有儲電材料的兩倍,而且生產工藝簡單,成本較低,而其高性能可以保持很長時間。領導這項研究的馬克西米利安·菲希特納博士說,如果能夠充分開發這種新材料的潛力,將來可以使鋰離子電池的儲電密度提高5倍。
短路保護
鋰離子電池組內短路保護鋰離子電池由於材料體系及製成工藝等諸多方面因素的影響,存在發生內短路的風險。雖然鋰離子電池在出廠時都已經經過嚴格的老化及自放電篩選,但由於過程失效及其他不可預知的使用因素影響,依然存在一定的失效機率導致使用過程中出現內短路。對於動力電池,其電池組中鋰離子電池多達幾百節甚至上萬節,大大放大了電池組發生內短的機率。由於動力電池組內部所蘊含的能量極大,內短路的發生極易誘發惡性事故,導致人員傷亡和財產損失。對於並聯的鋰離子動力電池模組,當其中一節或幾節電池發生內短時,電池模組中的其他電池會對其放電,電池組的能量會使內短電池溫度急速升高,極易誘發熱失控,最終導致電池起火爆炸。如示意圖1所示圖1:模組中單節電池內短示意常規的溫度探測在電池升溫時,雖然可以告知IC切斷主迴路,但無法阻止並聯電池模組內部的持續放電,並且由於主迴路切斷,電池模組所有的能量都集中於內短路電池,反而增加了熱失控發生的幾率。
理想的方案是,在發現某節電池發生內短而升溫時,可以切斷該節電池與模組中其他電池的連線迴路。如圖2所示,在單節電池上組裝TEPPTC或者MHP-TA系列產品,當內短路發生時TE保護器件可以有效地阻斷內短路電池與模組內其他電池的聯繫,防止惡性事故的發生。對於單體電池數量大的動力電池組,配組時對電池及器件內阻一致性要求較高,而MHP-TA由於其內部雙金屬結構,器件電阻的一致性非常好,可以極大地滿足對於電池內阻的要求。
圖2:電池內短路保護解決方案
鋰離子動力電池的系統組成及實際路況複雜,被動器件的防護是必不可少的。
市場需求
鋰離子電池需求情況重點考察手機和筆記本兩大下游的情況。2013年前5個月國內的手機總產量為5.58億部,同比增長22.02%,其中5月產量為1.23億部,同比增長32.80%。手機市場的需求情況較好。同期,國內筆記本計算機的總產量為9526.38萬台,同比增長3.86%,其中5月產量為1756.34萬台,同比減少8.12%。筆記本市場的總體表現比較一般。鑒於手機市場的較好表現,我們認為2013年全年鋰電池行業的需求有望總體維持穩定增長。
2014年上半年,中國鋰離子電池行業(包括電池、正負極材料、隔膜、電解液及專用設備等)保持穩定發展,全行業總產值接近400億元人民幣,產業格局和新技術套用出現亮點。
產業規模穩定增長
2014年上半年鋰離子電池產量約145億瓦時,銷售收入約277億元,同比增長約8%。正負極材料、隔膜、電解液及關鍵設備與電池產量維持同步增長,銷售收入接近100億元。