簡介
超價分子是指由一種或多種主族元素形成,而且中心原子價層電子數超過8的一類分子。例如五氯化磷、六氟化硫、磷酸根離子、三氟化氯以及三碘陰離子都是典型的超價分子。
八隅體規則的例外主要有三種,缺電子分子(例如三氟化硼
中心原子價電子數為6)、奇電子分子(例如一氧化氮的價電子數是奇數)和超價分子。利用分子軌道理論可以很好地解釋前兩種分子,然而對於超價分子,不但結構沒有得到公認的解釋,甚至定義都處於爭論之中。
定義、例子與命名
超價分子的概念最早由傑里米·穆舍爾(Jeremy I. Musher)在1969年正式提出,他定義以VA族到0族(包括氮族元素、氧族元素、鹵素、稀有氣體)元素為中心原子,而且中心原子氧化態比最低氧化態低的分子為超價分子。例子
以下是一些較為常見的超價分子的例子:有機化學中非常有用的高價碘化合物,例如戴斯-馬丁氧化劑(DMP)。
一些四配位(矽除外)、五配位、六配位的矽、磷、硫化合物。例如五氯化磷、五氟化磷、六氟化硫、硫烷以及高價硫烷。
稀有氣體化合物,比如四氟化氙。
一些鹵素互化物,比如五氟化氯。
非經典碳正離子,比如降冰片烷陽離子。
一些常見的酸,比如氯酸、磷酸、硫酸等。
N-X-L命名
超價分子的N-X-L命名法在1960年提出,經常用於區分超價分子中心原子所在主族,N-X-L的含義分別是:N為中心原子的價電子數
X為中心原子的元素符號
L為中心原子周圍的配體數目
以下是一些N-X-L命名的例子:
XeF2, 10-Xe-2
PCl5, 10-P-5
SF6, 12-S-6
IF7, 14-I-7
歷史
關於超價分子本質和分類方法的爭論可追溯到20世紀20年代,即路易斯和蘭米爾時期關於化學鍵本質的爭論。路易斯堅持用普通的二中心二電子鍵(2c-2e)來描述超價分子,從而允許擴大八隅體規則的範圍。但另一方面,蘭米爾堅持八隅體規則,並用離子鍵來解釋超價分子,使得價層電子數仍然為8(比如SF4, F2)。20世紀20年代晚期及30年代,薩格登提出二中心一電子鍵(2c-1e)的存在性,為超價分子的成鍵提供了無須擴充八隅體規則或引入離子鍵的解釋方法,然而該理論在當時幾乎未被接受。20世紀40年代和50年代時,倫德爾和皮門特爾使三中心四電子鍵理論得到普及,這與薩格登幾十年前的理論本質上是相同的。三中心四電子鍵可被看作兩個共線的二中心一電子鍵組合而成,剩下兩個非鍵電子定域在配體上。
赫爾曼·施陶丁格和格奧爾格·維蒂希在20世紀上半葉進行了製備超價有機分子的嘗試,他們尋求挑戰當時的化合價理論並成功製備了以氮和磷為中心原子的超價分子。超價的理論基礎直到1969年才由穆舍爾基本確立。
1984年,庫策爾尼格總結了前人的文獻,並用大量確鑿的證據證明d軌道參與很少。d軌道參與成鍵最多只有0.3e,而且主要作用是接受配體反饋的電子,增加體系的穩定性。
1990年,馬格努森發表了開創性的成果,明確排除了第2周期元素超價分子中d軌道參與雜化的影響。這是長期以來用分子軌道理論描述這些分子的爭論焦點。這種混亂部分是由描述這些分子的包含d軌道理論基礎造成的(或者說是不合理的高能量以及變形的分子構型),原來認為d函式對分子波函式的貢獻很大。在歷史上,d軌道必須參與成鍵的解釋占據了統治地位,時至今日,許多教科書上仍然這樣解釋。然而,馬格努森總結自己的工作結果後發現,d軌道的參與與超價基本無關。
里德和施萊爾運用6-31G(d)基組,採用哈特里-福克方程和自然布居分析計算了大量超價化合物的鍵級,表明它們的價層電子數都小於8,符合修正的八隅體規則。
基爾斯洛夫斯基和米克森使用巴德提出的分子中的原子理論(AIM),利用原子重疊矩陣計算超價分子的鍵級,結果說明它們的離子性很大,中心原子不可能超過8電子。
莫利納和杜巴多使用電子局域函式(ELF)研究氟化物,結果說明以氟為配體的化合物中心原子價電子數都小於8。
近年來,格萊斯皮和科伯運用多種方法說明超價分子的化學鍵實際上沒有什麼特殊之處,所謂修正的八隅體規則是多此一舉,大量的量子化學計算反而使得人們難以理解它的成鍵。然而,格萊斯皮也發現配體與中心原子電負性相近時,電子基本被均分,實際的價電子數依然超過8,例如Te(CH3)6和Se(CH3)6。
爭論
超價的名稱和概念仍處於爭論中。1984年,保羅·馮·拉居·施萊爾(Paul von Ragué Schleyer)根據這項爭議提出用超配位這個新名稱取代超價,因為新名稱不包含對化學鍵形式的定義,前面的爭論因此也可以被迴避。羅納德·格萊斯皮(Ronald Gillespie)對上述概念提出批評,他以電子定域函式分析為基礎,在2002年提出“超價分子和非超價分子(符合八隅體規則)中的化學鍵沒有本質差別,因此沒有理由再使用超價這個概念。”現代量子化學已經證實,對於有高電負性配體的超價分子(例如PF5),高電負性配體可以從中心原子拉走足夠的電子云密度,使得中心原子的價層電子數為8甚至更少。關於超價氟化物的事實與這個觀點相符,例如與PF5類似的氫化物正膦(PH5)是一種很不穩定的分子。即使是離子鍵模型也與熱化學計算符合得很好。它推測由PF3和F2形成PF4+F−的反應是放熱的,有利於自發進行。類似的形成PH4+H−卻是吸熱的,因此PH5很不穩定。不符合八隅體規則的分子
缺電子分子
三氯化鋁缺電子分子通常用兩種方式來使自身穩定。
第一種是形成多中心鍵,使得HOMO電子的離域範圍增大,與LUMO的能級差增加,分子更穩定。例如三氯化鋁經常以雙聚體或多聚體存在,甲硼烷極不穩定易雙聚成乙硼烷。還有碳的配位數超過4時,均形成了多中心鍵,例如Al2(CH3)6、(Ph3PAu)5CBF4、C2B10H12、[Co8C(CO)18]中碳的分別配位數為5、6、5、8。
三氟化硼
第二種是將電子反饋給配體。例如三氟化硼中氟的π軌道電子離域到硼的p軌道內,形成通常所說的鍵,此鍵鍵級為1,使得總成鍵電子數為8。而氯化鈹則因為軌道能量相差過大而屬於上一種分子。
奇電子分子
二氧化氮對於奇電子分子,通常也有兩種情況。
首先是成鍵軌道或非鍵軌道未填滿,例如氫分子離子H2、二氧化氮可以形成單電子鍵、三電子鍵等等。它們可以得電子、失電子或雙聚形成較穩定的分子。
其次是反鍵軌道上電子不成對,例如常見的氧分子就是一個含2個不成對電子的分子,儘管它的總電子數為偶數。
超價分子的成鍵
早期科學家鮑林等人研究超價分子的結構,使用人們熟悉的原子成鍵方式,並運用價層電子對互斥理論解釋了一些問題。因此,AB5和AB6將分別具有三角雙錐和正八面體構型。然而,根據實驗所觀察到的鍵角、鍵長,這種方法明顯違反八隅體規則。此外光譜實驗表明,d軌道能級較高,成鍵釋放的能量不足以補償躍遷消耗的能量。例如,四氟化氙5p和5d的能級差高達10電子伏特,這使得sp3dn雜化根本不可能進行。在這以後有幾個可供選擇的模型被提出。在20世紀50年代,定域分子軌道理論被引進來解釋超價分子的結構。根據這個理論,五配位、六配位的中心原子將分別發生sp3d雜化和sp3d2雜化,這就要求電子躍遷到空的d軌道上。然而,根據量子化學從頭計算的結果表明,d軌道對超價分子成鍵貢獻其實很小,因而這種模型不太合理。現在也認為這種雜化軌道理論不太重要。這種方法證明,在六配位的六氟化硫中,d軌道基本沒有參與S-F鍵的形成,但是電荷在硫原子與氟原子之間轉移,適當的共振結構可以解釋超價分子。對八隅體規則的補充已經涉及到超價分子成鍵的離子鍵特徵。作為這些模型的中的一種,三中心四電子鍵模型在1951年被提出,這個模型使用簡單定性的分子軌道來解釋超價分子。3c-4e鍵可以這樣描述,中心原子的p軌道與兩個配體的軌道線性組合形成分子軌道,這導致被占據的非鍵軌道成為HOMO,空置的反鍵軌道成為LUMO。穆舍爾也推薦這種維持八隅體規則的模型。結構
五配位磷
對於配體電負性比中心原子更高的超價化合物,可以畫出成鍵電子對不超過四對的共振式,並以離子鍵與剩餘的配體陰離子結合,以符合八隅體規則。例如,五氟化磷通過sp2雜化軌道形成三個水平方向的鍵。軸向的兩個鍵可以用兩種含有一個離子鍵和一個共價鍵的共振式來表示,因此它符合八隅體規則,並能解釋實驗測定的分子構型中軸向與水平方向鍵長的差異。軸向的鍵可以表示成兩個半鍵(共振式的對稱“平均”結果)或一個三中心四電子鍵。然而,軸向和水平方向之間的鍵長的差異大大小於這個結構模型的預測。六配位硫
對於六配位的分子,例如六氟化硫,六個鍵的鍵長是相等的。合理化的解釋是含有兩個普通共價鍵和兩個3c-4e鍵的三種共振式,每個3c-4e鍵垂直穿過硫氟鍵。六配位磷
六配位的磷化合物分子中含有氮、氧或硫配體,這是路易斯酸-路易斯鹼六配位加合物的例子。對於下方畫出的兩種類似的配合物,隨著N-P鍵的鍵長變短,C-P鍵的鍵長變長;隨著N-P路易斯酸鹼相互作用的增強,C-P鍵的鍵長變短。五配位矽
這種趨勢也出現在主族元素與含一個或更多孤對電子的配體形成的五配位化合物中,包括以下用氧作為配位原子的五配位矽化合物。在A中,Si-O鍵鍵長是1.749Å而Si-I鍵是3.734Å;在B中,Si-O鍵增長到1.800Å,而Si-Br鍵縮短到3.122Å;在C中,Si-O鍵最長(1.954Å)而Si-Cl鍵最短(2.307Å)
量子化學從頭計算
五配位矽化合物增大的反應性並沒有得到完整的解釋。科里於和他的同事提出五配位矽原子更高的電正性可能導致了它的反應性增大。初步從頭計算在某些程度上支持這個假設,但也使用了一個小的假設作為基礎。迪特爾斯和他的同事使用從頭計算的軟體程式Gaussian 86來比較四配位的矽或磷化合物與它們的五配位類似物。這種量子化學從頭計算(英語:Ab initio quantum chemistry methods)方法被用於補充說明五配位化合物的親核反應活潑性增加的原因。對矽來說,使用6-31+G*基組,因為五配位矽化合物是陰離子;對於磷,則使用6-31G*基組。
理論上五配位化合物比類似的四配位化合物親電性更弱,因為配體的空間位阻大和電子云密度高,然而實驗表明它們的親核反應活性比四配位的類似物更強。科學家進行了進一步從頭計算來更深地理解這類四配位和五配位分子的反應現象。不同系列的物質按氟化程度分類。鍵長和電子密度的函式可以表示出中心原子連有氫負離子配體的數目。計算時,每增加一個氫原子就減少一個氟原子。
科學家已經通過這種從頭計算對於四配位和五配位的矽化合物和磷化合物的鍵長、電荷密度、馬利肯鍵重疊進行了計算。四配位矽化合物與氟離子的加合總共增加了0.1個元電荷,這被認為是微不足道的。總的來說,三角雙錐形五配位化合物中的鍵長比類似的四配位化合物更長。Si-F鍵和Si-H鍵的鍵長均有所增加,五配位磷化合物的類似現象則較微弱。矽化合物比磷化合物有更顯著的鍵長增加,這是因為配體有效增加了磷的有效核電荷。