以十進位為例:
2 8 → 2²+8²=68 → 6²+8²=100 → 1²+0²+0²=1
3 2 → 3²+2²=13 → 1²+3²=10 → 1²+0²=1
3 7 → 3²+7²=58 → 5²+8²=89 → 8²+9²=145 → 1²+4²+5²=42 → 4²+2²=20 → 2²+0²=4 → 4²=16 → 1²+6²=37……
因此28和32是快樂數,而在37的計算過程中,37重覆出現,繼續計算的結果只會是上述數字的循環,不會出現1,因此37不是快樂數。
不是快樂數的數稱為不快樂數(unhappy number),所有不快樂數的數位平方和計算,最後都會進入 4 → 16 → 37 → 58 → 89 → 145 → 42 → 20 → 4 的循環中。
在十進位下,100以內的快樂數有(OEIS中的數列A00770) :1, 7, 10, 13, 19, 23, 28, 31, 32, 44, 49, 68, 70, 79, 82, 86, 91, 94, 97, 100。
也許我們能在小於10的進位制之下發現更有趣的東西。這樣數字中就不會夾著字母了。167比9的倍數大5,那么在能整除9的進制中,數字的末位是5,看上去比笨拙的7喜慶多了。(當然,這只是對我們習慣了十進制的眼睛來說的,在9進制之下5的含義和我們想像的並不一樣。)在9進制中,167寫作205,但是我個人更喜歡81進制中的25,它很簡潔。
在不同的進位制之下研究167引出了另一個有趣的事實:167是一個嚴格的非迴文數,也就是說它在2和165之間的任何一個進位制之下都不能被寫成迴文數(正著讀和反著讀完全一樣的數字)。(我們停在165進制的原因是,它是167-2,而任何一個數字n在n-1進制之下都是迴文數,看上去都是11的形式。)目前為止,我們還不知道嚴格非迴文數的數目,不過167的下一個非迴文數是179,再下一個是223。
上面列出來的這些特徵,完全足以證明舉辦一個慶典的必要性,除此之外,167還是一個安全素數,一個非常cototient質數,一個全循環質數。我特別喜歡最後一個:這意味著存在一個166位的數字,它的每個倍數都是數字的循環排列。也就是說,當你把這個數乘上一個整數之後,得到的積恰好是原來的數的數字,排列順序相同,但是起點不同,例如142857×2=285714。
趣味數學
趣味數學以帶有強烈的遊戲色彩知名於世。歐拉就是通過對bridge-crossing之謎的分析打下了拓撲學的基礎。萊布尼茨也寫到過他在獨自玩插棍遊戲時分析問題的樂趣。希爾伯特證明了切割幾何圖形中的許多重要定理。馮·紐曼奠基了博弈論。最受大眾歡迎的計算機遊戲—生命是英國著名數學家康威發明的。愛因斯坦也收藏了整整一書架關於數學遊戲和數學謎的書。 |