可以決定主叢P上的一條曲線,稱為C的水平提升曲線,水平提升曲線的切向量稱為水平向量。P上每點的水平向量全體構成P在該點的切空間的一個n維子空間,稱為水平子空間。P上的聯絡也可以由在各點給定的、符合一定條件的水平子空間所定義。 M上以定點x為始點和終點的分段可微閉曲線,其水平提升相應於在π-1x上群 G的一個右作用。所以每一條以x為端點的分段可微閉曲線對應群G的一個元素,且為同態,稱這同態為和樂映射,其群為和樂群。 和樂群是研究主叢聯絡的一個重要工具。已經證明,由和樂群出發可以重建主叢的拓撲結構和聯絡本身。 聯絡論的作用 聯絡在微分幾何和理論物理中有很多作用。 ① (C.)F.克萊因在埃爾朗根綱領中把幾何空間看成群的作用空間,且作用是可遷的,把幾何性質看成群作用下的不變的性質。在此觀點下,歐氏空間,仿射空間,射影空間與共形空間等等都有相應的可遷變換群。黎曼流形是彎曲空間且在其上一般沒有可遷變換群作用,因而黎曼流形不在克萊因的幾何空間之列。但從纖維叢的觀點,黎曼流形上各點的切空間仍然是克萊因意義下的幾何空間, 這時各點的切空間之間由聯絡來建立聯繫(要通過曲線的水平提升)。 從而對於種種克萊因意義下的幾何空間,都可作其相應的聯絡空間, 如仿射聯絡空間,共形聯絡空間,射影聯絡空間等等,這是克萊因理論的一大發展,這種概念首先是由É嘉當提出的。 ② 通過聯絡可以作出曲率,利用曲率可以作出纖維叢上的示性類,它們是流形M上的閉形式,這些示性類(其積分稱為示性數)是研究纖維叢的拓撲性質的重要工具。這是陳省身等人的貢獻。 ③ 1954年物理學家楊振寧等提出了規範場理論,它在研討自然界四種基本作用力的規律中起了極為重要的作用。實際上,規範勢相當於聯絡,場的強度相當於曲率,截面相當于波函式,示性數表示某些物理量(如磁荷,瞬子數等)。20世紀70年代起,纖維叢聯絡論和規範場論的相互溝通對數學和物理學都起了巨大的推進作用。