T矩陣

T矩陣

T矩陣(T-matrix)是一類特殊的矩陣,可用於構作鮑默特-霍爾表,若G=g1,g2,…,gn為加法可換群,X⊆G,M=(mij),當gj-gi∈X時mij=1,否則mij=0,則稱M是關於X的Ⅰ型關聯矩陣,若X可劃分為X=X1∪X2,使gj-gi∈X1時mij=1,gi-gj∈X2時mij=-1,gj-gi∉X時mij=0,則稱M為Ⅰ型(0,1,-1)矩陣,若M1,M2,M3,M4是n階可換群G上的4個(0,1,-1)矩陣,使對n個位置的每一個恰有一個Mi在此位置上元素不為零,且M₁M₁+M₂M₂+M₃M₃+M4M4=nIn,其中In為單位矩陣,則稱這4個矩陣為T矩陣,若存在t階T矩陣,則存在t階鮑默特-霍爾表BH[4t],許多已知的BH[4t]是從T矩陣得到的 。

基本介紹

T矩陣 T矩陣

是長為n的(0,±1)-序列,若

T矩陣 T矩陣

(i)對1≤j≤n,恰有一個為±1,其餘3個均為0,

(ii)對1≤j≤n-1,恆有

T矩陣 T矩陣
T矩陣 T矩陣

則稱是一組不相交T-序列。簡稱 T-序列(T-sequence)。

T矩陣 T矩陣
T矩陣 T矩陣

對上述T-序列,設1≤i≤4,令X表示以A為第一行而生成的n階循環矩陣,則稱為一組n階不相交循環T-矩陣,簡稱 循環T-矩陣

用T-矩陣構造Baumert-Hall陣列

T矩陣 T矩陣

引理1設為n階循環T-矩陣。則

(i)1≤i,j≤4,i≠j,則X與X不相交,即

T矩陣 T矩陣
T矩陣 T矩陣

(ii)是一個(1,-1)-矩陣;

(iii)

T矩陣 T矩陣

(iv)對1≤i≤4,X的各行和都相等,設X的行和為n,則

T矩陣 T矩陣

下述定理給出構作Baumert-Hall陣列的一個強有力方法。

T矩陣 T矩陣

定理1(Cooper,J.Wallis) 設為n階循環T-矩陣,a,b,c,d為交換變元,令

T矩陣 T矩陣

再設R為下述n×n矩陣:

式(7) 式(7)

將式(6)與式(7)代入下述Goethal-Seidel陣列

式(8) 式(8)

則得到一個OD(4n;n,n,n,n)。

在上述定理中,若取a=b=c=d=1,則得到一個4n階H-陣,於是得到下述結果。

定理2若存在一組長為n的T-序列。則存在4n階H-陣。

T矩陣 T矩陣

由定理1與定理2可見T-序列在構作Baumert-Hall陣列和Hadamard矩陣時所起的重要作用。一般來說,尋求長為n的T-序列並不容易。由引理1之(iv)可知。設是一組長為n的T-序列,又設A中所有元素的和為n,1≤i≤4,則必有

T矩陣 T矩陣

這一觀察有助於尋找T-序列。由Lagrange四平方和定理,任一正整數n都能表為4個非負整數的平方和,但是否對每一個正整數n都存在長為n的T-序列?這是一個尚未解決的問題,從對構作Hadamard矩陣的套用而言,我們主要關心n為奇數時T-序列的存在性。

猜想1 設n≥1為奇數,則存在長為n的T-序列。

若上述猜想成立,則作為其推論,Hadamard猜想也就得到證明。

定理3若4n≤200,則4n階H-陣存在。

相關詞條

相關搜尋

熱門詞條

聯絡我們