McMaster算法

加拿大McMaster大學的研究人員根據突變理論,即“函式中的一個變數產生非連續特性而其他變數只顯示連續性變化”(Thom,1975),開發了McMaster算法。 這種算法建立在這樣的前提下,即當交通從擁擠狀態向非擁擠狀態變化時,流量和占有率變化平穩,而速度表現為突然的變化。 McMaster算法主要的缺點是:該算法在定義阻塞與非阻塞邊界時考慮了交通流及道路幾何線形的變化,因而該算法需要對不同的地點和不同的數據集重新定義。

加拿大McMaster大學的研究人員根據突變理論,即“函式中的一個變數產生非連續特性而其他變數只顯示連續性變化”(Thom,1975),開發了McMaster算法。這種算法建立在這樣的前提下,即當交通從擁擠狀態向非擁擠狀態變化時,流量和占有率變化平穩,而速度表現為突然的變化。使用從擁擠向非擁擠狀態變化的流量-占有率關係的歷史資料,開發一個流量-占有率模板,該模板在坐標軸上由四個區域組成,每個區域代表一個特別的交通狀態。該算法的原理是在模板和觀測數據之間作兩次比較檢查,第一次比較確定檢測器附近是否擁擠,如果擁擠,通過檢查下游檢測器的交通狀態確定擁擠的來源[2]。
與加州#8算法相比,McMaster算法有很多明顯的優點:在這個算法中,下游檢測器的故障不會影響事件檢測,這與加州#8算法不同;在驗證可能的事件時,它使用流量作為輸入,而加州#8使用占有率作為輸入;平均檢測時間為30s,比加州#8要快;由於McMaster算法在驗證事件時,考慮了偶發性擁擠,所以可以降低誤警率。
McMaster算法主要的缺點是:該算法在定義阻塞與非阻塞邊界時考慮了交通流及道路幾何線形的變化,因而該算法需要對不同的地點和不同的數據集重新定義。這導致其可移植性較差,而且該算法預定的阻塞與非阻塞邊界不能在實時運行過程中隨時間變化

相關詞條

相關搜尋

熱門詞條

聯絡我們