常函式

常函式

在數學中,常函式是指不管自變數值如何變化,函式值都不變的函式,形式為Y=C(X∈D(D是函式的定義域),且C為常數);在c++程式語言中,常函式是指使用const關鍵字聲明的函式。形式為 (參數表)const;在導數中,若在一定區間內恆有f'(x)=0則f(x)在這個區間上為常函式。

定義

1.在數學中,常函式是指不管自變數值如何變化,函式值都不變的函式,形式為Y=C(X∈定義域,C為常數)

2.在c++程式語言中,常函式是指使用const聲明的函式,形式為 <類型標識符> <函式名>(參數表)const;

3.在導數中,若在一定區間內恆有f'(x)=0則f(x)在這個區間上為常函式。

f(x)=0

f(x)=c(c≠0)定義域為R,是偶函式。

4. 在計算機中,一個函式是常函式,意味著它不能改變類中任何一個數據成員。任何這樣的一個企圖或者仍和有可能修改數據或者成員的動作,將導致一個編譯錯誤。如
void display(ostream &out) const;

它會將數據插入到ostream out中,並予以顯示。

周期

常函式是周期函式。

它的周期是任意非零實數,因為正實數沒有最小值,所以無最小周期

拓展

常值函式

常值函式是初等函式中最簡單的一種, 就是值域只包含一個元素的函式; 換句話說,就是因變數取固定值的函式。

複變函數論中的劉維爾定理告訴人們:平面上的有界全純函式只能是常值函式。

常值函式是周期函式,但沒有最小正周期

定義和性質

1、周期函式的定義:對於函式y=f(x),若存在常數T≠0,使得f(x+T) = f(x),則函式y= f(x)稱為周期函式,T稱為此函式的周期。

性質1:若T是函式y=f(x)的任意一個周期,則T的相反數(-T)也是f(x)的周期。

性質2:若T是函式f(x)的周期,則對於任意的整數n(n≠0),nT也是f(x)的周期。

性質3:若T1、T2都為函式f(x)的周期,且T1±T2≠0,則T1±T2也是f(x)的周期。

2、定義:在函式f(x)的周期的集合中,我們稱其正數者為函式f(x)的正周期,稱其負數者為函式f(x)的負周期。若所有正周期中存在最小的一個,則我們稱之為函式f(x)的最小正周期,記作T※。

性質4:若T※為函式f(x)的最小正周期,T為函式f(x)的任意一個周期,則 Z -(非零整數)。

性質5:若函式f(x)存在最小正周期T※,且T1、T2分別為函式f(x)的任意兩個周期,則 為有理數。

相關詞條

相關搜尋

熱門詞條

聯絡我們