基礎知識
先介紹平面曲線的有關概念。
![單連通區域](/img/d/7ef/wZwpmLxUTM4ETMyITN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyUzL2QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![單連通區域](/img/a/48a/wZwpmL3QzNzAjN4czN0YzM1UTM1QDN5MjM5ADMwAjMwUzL3czL3EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![單連通區域](/img/6/a71/wZwpmL4QDM2cDO0cjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL3YzL4MzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![單連通區域](/img/4/d61/wZwpmL3ITM2QjM5EjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLxYzLwMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![單連通區域](/img/f/e82/wZwpmL1MDM1AzN0gTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4UzLzczLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![單連通區域](/img/5/f0e/wZwpmL0ATM4YjM2QTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzL0EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![單連通區域](/img/b/0ba/wZwpmLygzN2AjM1IzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyczLxEzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![單連通區域](/img/1/49a/wZwpmLxcTN1kTNyAzMzEzM1UTM1QDN5MjM5ADMwAjMwUzLwMzL0IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![單連通區域](/img/6/92f/wZwpmL2ITO5kzMzQTMzEzM1UTM1QDN5MjM5ADMwAjMwUzL0EzL3AzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![單連通區域](/img/7/36d/wZwpmLzYTMxEzN2kzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czLygzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![單連通區域](/img/b/602/wZwpmL2YDMwMDO0UTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1UzLzAzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![單連通區域](/img/2/718/wZwpmL4QzNyEjN5UjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1YzLxEzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![單連通區域](/img/a/654/wZwpmL4UzN1cTM2gzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4czLwMzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
定義1 設平面曲線 ,其中 是實的 連續 函式,那么曲線C就稱為 連續曲線, 分別稱為C的 起點與 終點,若在 上, 都連續且對每一個t,有 ,那么曲線C稱為 光滑曲 線。由幾段依次相接的光滑曲線所組成的曲線稱為 逐段光滑曲線。對於滿足 的 與 ,當 且 成立時,點 稱為曲線C的 重點。沒有重點的連續曲線C稱為 簡單曲線或 若爾當(Jardan)曲線。若簡單曲線C的起點與終點重合,即 ,那么曲線C稱為 簡單閉曲線。如圖1所示。
![圖1(a)](/img/6/26b/wZwpmL4gTMxgzM3cTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL3UzL0czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![圖1(b)](/img/a/016/wZwpmL3AjMxMTN4YjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
任意一條簡單閉曲線C把整個複平面唯一地分成三個互不相交的點集,其中除去C以外,一個是有界區域,稱為C的 內部,另一個是無界區域,稱為C的 外部,C為它們的公共邊界,簡單閉曲線的這一性質,其幾何直觀意義是很清楚的。
定義2 複平面上的一個區域D,如果在其中任作一條簡單閉曲線,而曲線的內部總屬於D,就稱D為 單連通區域(圖2(a));一個區域如果不是單連通區域,就稱為 多連通區域(圖2(b))。
一條簡單閉曲線的內部是單連通區域(圖2(a)),單連通區域D具有這樣的特徵:屬於D的任何一條簡單閉曲線,在D內可以經過連續的變形而縮成一點,而多連通區域就不具備這個特徵。
![圖2(a)](/img/d/0e3/wZwpmLyYzNwUTMxQDO0YzM1UTM1QDN5MjM5ADMwAjMwUzL0gzL1MzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![圖2(b)](/img/4/6d5/wZwpmL3EjMzMzN1YTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2UzL4YzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
單連通區域的一些性質
![單連通區域](/img/2/f7b/wZwpmLygTN2IDOwMzMzIDN0UTMyITNykTO0EDMwAjMwUzLzMzLxQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![單連通區域](/img/2/f7b/wZwpmLygTN2IDOwMzMzIDN0UTMyITNykTO0EDMwAjMwUzLzMzLxQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![單連通區域](/img/8/de9/wZwpmL0cjN4cDM5gjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4YzLxMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
我們現在將概述單連通區域的一些性質,這些性質闡明它在全純函式理論中起著重要作用。在這些性質中,(a)和(b)稱為的內拓撲性質;(c)和(d)涉及嵌入s 內的方式;性質(e)到(h)按特徵來說是分析性的;(i)是關於環的代數陳述。
![單連通區域](/img/2/f7b/wZwpmLygTN2IDOwMzMzIDN0UTMyITNykTO0EDMwAjMwUzLzMzLxQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
定理1 對於一個平面區域,下面九個條件中的每一個蘊涵著其餘的各個條件:
![單連通區域](/img/2/f7b/wZwpmLygTN2IDOwMzMzIDN0UTMyITNykTO0EDMwAjMwUzLzMzLxQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
(a) 同胚於開單位圓盤U;
![單連通區域](/img/2/f7b/wZwpmLygTN2IDOwMzMzIDN0UTMyITNykTO0EDMwAjMwUzLzMzLxQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
(b)是單連通的;
![單連通區域](/img/2/f7b/wZwpmLygTN2IDOwMzMzIDN0UTMyITNykTO0EDMwAjMwUzLzMzLxQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![單連通區域](/img/5/0b3/wZwpmL2gDO3YTN3ADO3EDN0UTMyITNykTO0EDMwAjMwUzLwgzLyQzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![單連通區域](/img/a/c1b/wZwpmLwYTN2EjM4QTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
(c)對內每一條閉路徑和對每一個;
![單連通區域](/img/0/a1b/wZwpmLyAzM2YDNxMjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzYzL1IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
(d)是連通的;
![單連通區域](/img/4/429/wZwpmL0QDO4gDO3ITN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyUzLyYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![單連通區域](/img/2/f7b/wZwpmLygTN2IDOwMzMzIDN0UTMyITNykTO0EDMwAjMwUzLzMzLxQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
(e)每一個能用多項式在的緊子集上一致逼近;
![單連通區域](/img/4/429/wZwpmL0QDO4gDO3ITN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyUzLyYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![單連通區域](/img/2/f7b/wZwpmLygTN2IDOwMzMzIDN0UTMyITNykTO0EDMwAjMwUzLzMzLxQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![單連通區域](/img/5/0b3/wZwpmL2gDO3YTN3ADO3EDN0UTMyITNykTO0EDMwAjMwUzLwgzLyQzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
(f)對每一個和在內每一條閉路徑,
![單連通區域](/img/5/2cd/wZwpmL1cTNyQjNzUzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1czLwgzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![單連通區域](/img/4/429/wZwpmL0QDO4gDO3ITN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyUzLyYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![單連通區域](/img/2/04d/wZwpmL3AjMzMTM5MzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzczL2gzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![單連通區域](/img/3/e58/wZwpmL1YjNxAjM2QTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzLxIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
(g)每一個對應一個,使得;
![單連通區域](/img/4/429/wZwpmL0QDO4gDO3ITN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyUzLyYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![單連通區域](/img/6/d89/wZwpmLzATO2YzNyIjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzL4IzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![單連通區域](/img/8/fbc/wZwpmLyEzN4MzMyYzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2czL2QzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
(h)如果且,則存在一個,使得
![單連通區域](/img/f/dc7/wZwpmLyYTN0YDM2kzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czL1IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![單連通區域](/img/4/429/wZwpmL0QDO4gDO3ITN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyUzLyYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![單連通區域](/img/6/d89/wZwpmLzATO2YzNyIjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzL4IzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![單連通區域](/img/9/9be/wZwpmL2YzN5EjN1gzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4czL1czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![單連通區域](/img/4/a7d/wZwpmL4QTN3QTM3YjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL3UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
(i)如果且,則存在一個,使得。
![單連通區域](/img/4/429/wZwpmL0QDO4gDO3ITN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyUzLyYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![單連通區域](/img/2/f7b/wZwpmLygTN2IDOwMzMzIDN0UTMyITNykTO0EDMwAjMwUzLzMzLxQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![單連通區域](/img/8/778/wZwpmL2MzN5UzM2MzNwIDN0UTMyITNykTO0EDMwAjMwUzLzczL4MzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![單連通區域](/img/2/f7b/wZwpmLygTN2IDOwMzMzIDN0UTMyITNykTO0EDMwAjMwUzLzMzLxQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![單連通區域](/img/9/9d7/wZwpmLwcjN2YjMxYjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![單連通區域](/img/2/f7b/wZwpmLygTN2IDOwMzMzIDN0UTMyITNykTO0EDMwAjMwUzLzMzLxQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
定理2 如果,此處為平面內任意開集,且在內沒有零點,則在內調和。
單連通區域內的柯西積分定理
![單連通區域](/img/a/87b/wZwpmL1IzMxMjNxcTN2UzM1UTM1QDN5MjM5ADMwAjMwUzL3UzL1UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
定理3 設在z平面上的單連通區域D內解析,C為D內任意一條圍線,則
![單連通區域](/img/e/350/wZwpmLyADM1gTM2QzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0czL4EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![單連通區域](/img/a/87b/wZwpmL1IzMxMjNxcTN2UzM1UTM1QDN5MjM5ADMwAjMwUzL3UzL1UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![單連通區域](/img/f/42c/wZwpmL4AzM3ETMyUTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1UzL3AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
推論1 設在單連通區域D內解析,C為D內任意一條閉曲線(C不必為簡單閉曲線),則。
證明: 由於閉曲線C總可以看成區域D內有限條周線銜接而成。因此,由復積分的曲線可加性及定理2即可得結論。
![單連通區域](/img/a/87b/wZwpmL1IzMxMjNxcTN2UzM1UTM1QDN5MjM5ADMwAjMwUzL3UzL1UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![單連通區域](/img/a/87b/wZwpmL1IzMxMjNxcTN2UzM1UTM1QDN5MjM5ADMwAjMwUzL3UzL1UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![單連通區域](/img/e/af9/wZwpmLzgzNwEzM3gjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4YzL3YzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![單連通區域](/img/7/ec6/wZwpmL3gDM5ETM0MzM2EzM1UTM1QDN5MjM5ADMwAjMwUzLzMzLxUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![單連通區域](/img/5/ada/wZwpmLzETN0ETNwYzMzEzM1UTM1QDN5MjM5ADMwAjMwUzL2MzLzMzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![單連通區域](/img/8/d1a/wZwpmL1ADN1kjNxczMxMzM1UTM1QDN5MjM5ADMwAjMwUzL3MzL1YzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![單連通區域](/img/4/744/wZwpmLyAzM4YDM0gjN2QDM1UTM1QDN5MjM5ADMwAjMwUzL4YzL3YzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
推論2 設函式在單連通區域D內解析,則在D內的積分與路徑無關,即對D內任意兩點以及D內任意兩條以為起點,為終點的路徑和,總有
![單連通區域](/img/7/26a/wZwpmL2QjMyQTNxMDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLzgzL3AzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)