可逆過程

可逆過程

可逆過程:是指熱力學系統在狀態變化時經歷的一種理想過程。熱力學系統由某一狀態出發,經過某一過程到達另一狀態後,如果存在另一過程,它能使系統和外界完全復原,既使系統回到原來狀態,同時又完全消除原來過程對外界所產生的一切影響,則原來的過程稱為可逆過程。反之,如果無論採用何種辦法都不能使系統和外界完全復原,則原來的過程稱為不可逆過程。

可逆過程和熵變

當可逆過程改變系統狀態時,系統與外界的熵的總量改變為零;與之對應的是,系統經不可逆過程改變狀態後熵總是增加的,這是熱力學第二定律的體現。進一步地,可逆過程這一概念劃定了熱力學與工程上熱機效率的上限:由於可逆過程是系統無熱量“浪費”的過程,基於由可逆過程構成的可逆循環的熱機效率是所有熱機可能達到的最高效率(參見卡諾循環),實際熱機由於摩擦等因素只能進行不可逆的循環,任何熱機都無法達到可逆循環熱機的效率。

有些嚴格的場合需要區別可逆過程和準靜態過程(在某些不太嚴格的場合兩者屬於同義語):可逆過程總是準靜態的,但反過來不一定成立。例如,在一個器壁存在摩擦的圓柱體容器中,對圓柱體和活塞之間的氣體進行無窮小的壓縮,這一過程是準靜態的但不是可逆的。雖然這個系統只是從平衡態發生了一個無窮小的改變,因摩擦產生的熱量損耗是不可逆的,僅僅把活塞向相反方向移動無窮小的距離也無法將這些熱量還原,由此可知存在能量耗散的準靜態過程不是可逆過程。

教科書中常提到的可逆過程——可逆絕熱過程是等熵過程的一個例子,當封閉系統與外界沒有任何熱交換,並在無耗散的情況下自由膨脹或壓縮時,這一過程就是一個可逆絕熱過程。

工程古語

歷史上,“特斯拉原理”(Tesla principle)一詞曾被尼古拉·特斯拉用於描述某些特定的可逆過程,交變電流時建立發展了這個原理。在特斯拉渦輪泵的演示中,隨著圓盤自轉固定在軸上的機械在發動機的推動下開始工作。而當渦輪泵的工作方向被反轉時,圓盤的行為相當於一個泵。

​其他

在一定的條件和要求下,可以把可逆過程當作實際過程的近似和簡化。更重要的是,理想的可逆過程的引入及其與實際的不可逆過程的區分,是表述熱力學第二定律、引入熵和熵增加原理的依據。這再一次顯示了理想模型的理論威力和重要性。還應強調指出,實際過程的不可逆性是針對由大量微觀粒子組成的熱力學系統而言的。單個或少量粒子的力學過程都是可逆的。這表明,當研究對象由少量粒子換成大量粒子構成的群體時,物理規律的性質和特徵發生了深刻的質的變化。

相關詞條

相關搜尋

熱門詞條

聯絡我們