《相對論》

《相對論》

《相對論》是關於時空和引力的基本理論,主要由愛因斯坦(AlbertEinstein)創立,分為狹義相對論(特殊相對論)和廣義相對論(一般相對論)。相對論的基本假設是相對性原理,即物理定律與參照系的選擇無關。狹義相對論和廣義相對論的區別是,前者討論的是勻速直線運動的參照系(慣系參照系)之間的物理定律,後者則推廣到具有加速度的參照系中(非慣性系),並在等效原理的假設下,廣泛套用於引力場中。

提出過程

《相對論》《相對論》
除了量子理論以外,1905年剛剛得到博士學位的愛因斯坦發表的一篇題為《論動體的電動力學》的文章引發了二十世紀物理學的另一場革命。文章研究的是物體的運動對光學現象的影響,這是當時經典物理學面對的另一個難題。十九世紀中葉,麥克斯韋建立了電磁場理論,並預言了以光速C傳播的電磁波的存在。到十九世紀末,實驗完全證實了麥克斯韋理論。電磁波是什麼?它的傳播速度C是對誰而言的呢?當時流行的看法是整個宇宙空間充滿一種特殊物質叫做“以太”,電磁波是以太振動的傳播。但人們發現,這是一個充滿矛盾的理論。如果認為地球是在一個靜止的以太中運動,那么根據速度疊加原理,在地球上沿不同方向傳播的光的速度必定不一樣,但是實驗否定了這個結論。如果認為以太被地球帶著走,又明顯與天文學上的一些觀測結果不符。
1887年麥可遜和莫雷利用光的干涉現象進行了非常精確的測量,仍沒有發現地球有相對於以太的任何運動。對此,洛侖茲(H.A.Lorentz)提出了一個假設,認為一切在以太中運動的物體都要沿運動方向收縮。由此他證明了,即使地球相對以太有運動,麥可遜也不可能發現它。愛因斯坦從完全不同的思路研究了這一問題。他指出,只要摒棄牛頓所確立的絕對空間和絕對時間的概念,一切困難都可以解決,根本不需要什麼以太。愛因斯坦提出了兩條基本原理作為討論運動物體光學現象的基礎。第一個叫做相對性原理。它是說:如果坐標系K'相對於坐標系K作勻速運動而沒有轉動,則相對於這兩個坐標系所做的任何物理實驗,都不可能區分哪個是坐標系K,哪個是坐標系K′。第二個原理叫光速不變原理,它是說光(在真空中)的速度c是恆定的,它不依賴於發光物體的運動速度。
從表面上看,光速不變似乎與相對性原理衝突。因為按照典力學速度的合成法則,對於K′和K這兩個做相對勻速運動的坐標系,光速應該不一樣。愛因斯坦認為,要承認這兩個原理沒有牴觸,就必須重新分析時間與空間的物理概念。經典力學中的速度合成法則實際依賴於如下兩個假設:兩個事件發生的時間間隔與測量時間所用的鐘的運動狀態沒有關係;兩點的空間距離與測量距離所用的尺的運動狀態無關。愛因斯坦發現,如果承認光速不變原理與相對性原理是相容的,那么這兩條假設都必須摒棄。這時,對一個鍾是同時發生的事件,對另一個鐘不一定是同時的,同時性有了相對性。在兩個有相對運動的坐標系中,測量兩個特定點之間的距離得到的數值不再相等。距離也有了相對性。
如果設K坐標系中一個事件可以用三個空間坐標x、y、z和一個時間坐標t來確定,而K′坐標系中同一個事件由x′、y′、z′和t′來確定,則愛因斯坦發現,x′、y′、z′和t′可以通過一組方程由x、y、z和t求出來。兩個坐標系的相對運動速度和光速c是方程的唯一參數。這個方程最早是由洛侖茲得到的,所以稱為洛侖茲變換。利用洛侖茲變換很容易證明,鍾會因為運動而變慢,尺在運動時要比靜止時短,速度的相加滿足一個新的法則。相對性原理也被表達為一個明確的數學條件,即在洛侖茲變換下,帶撇的空時變數x'、y'、z'、t'將代替空時變數x、y、z、t,而任何自然定律的表達式仍取與原來完全相同的形式。人們稱之為普遍的自然定律對於洛侖茲變換是協變的。這一點在我們探索普遍的自然定方面具有非常重要的作用。
此外,在經典物理學中,時間是絕對的。它一直充當著不同於三個空間坐標的獨立角色。愛因斯坦的相對論把時間與空間聯繫起來了。認為物理的現實世界是各個事件組成的,每個事件由四個數來描述。這四個數就是它的時空坐標t和x、y、z,它們構成一個四維的連續空間,通常稱為閔可夫斯基四維空間。在相對論中,用四維方式來考察物理的現實世界是很自然的。狹義相對論導致的另一個重要的結果是關於質量和能量的關係。在愛因斯坦以前,物理學家一直認為質量和能量是截然不同的,它們是分別守恆的量。愛因斯坦發現,在相對論中質量與能量密不可分,兩個守恆定律結合為一個定律。他給出了一個著名的質量-能量公式:E=mc^2,其中c為光速。於是質量可以看作是它的能量的量度。計算表明,微小的質量蘊涵著巨大的能量。這個奇妙的公式為人類獲取巨大的能量,製造核子彈和氫彈以及利用原子能發電等奠定了理論基礎。
《相對論》愛因斯坦
對愛因斯坦引入的這些全新的概念,大部分物理學家,其中包括相對論變換關係的奠基人洛侖茲,都覺得難以接受。舊的思想方法的障礙,使這一新的物理理論直到一代人之後才為廣大物理學家所熟悉,就連瑞典皇家科學院,1922年把諾貝爾獎金授予愛因斯坦時,也只是說“由於他對理論物理學的貢獻,更由於他發現了光電效應的定律。”對於相對論隻字未提。愛因斯坦於1915年進一步建立起了廣義相對論。狹義相對性原理還僅限於兩個相對做勻速運動的坐標系,而在廣義相對論性原理中勻速運動這個限制被取消了。他引入了一個等效原理,認為我們不可能區分引力效應和非勻速運動,即非勻速運動和引力是等效的。他進而分析了光線在靠近一個行星附近穿過時會受到引力而彎折的現象,認為引力的概念本身完全不必要。
可以認為行星的質量使它附近的空間變成彎曲,光線走的是最短程線。基於這些討論,愛因斯坦導出了一組方程,它們可以確定由物質的存在而產生的彎曲空間幾何。利用這個方程,愛因斯坦計算了水星近日點的位移量,與實驗觀測值完全一致,解決了一個長期解釋不了的困難問題,這使愛因斯坦激動不已。他在寫給埃倫菲斯特的信中這樣寫道:“……方程給出了近日點的正確數值,你可以想像我有多高興!有好幾天,我高興得不知怎樣才好。”
1915年11月25日,愛因斯坦把題為“萬有引力方程”的論文提交給了柏林的普魯士科學院,完整地論述了廣義相對論。在這篇文章中他不僅解釋了天文觀測中發現的水星軌道近日點移動之謎,而且還預言:星光經過太陽會發生偏折,偏折角度相當於牛頓理論所預言的數值的兩倍。第一次世界大戰延誤了對這個數值的測定。1919年5月25日的日全食給人們提供了大戰後的第一次觀測機會。英國人愛丁頓奔赴非洲西海岸的普林西比島,進行了這一觀測。11月6日,湯姆遜在英國皇家學會和皇家天文學會聯席會議上鄭重宣布:得到證實的是愛因斯坦而不是牛頓所預言的結果。他稱讚道“這是人類思想史上最偉大的成就之一。愛因斯坦發現的不是一個小島,而是整整一個科學思想的新大陸。”泰晤士報以“科學上的革命”為題對這一重大新聞做了報導。訊息傳遍全世界,愛因斯坦成了舉世矚目的名人。廣義相對論也被提高到神話般受人敬仰的寶座。
從那時以來,人們對廣義相對論的實驗檢驗表現出越來越濃厚的興趣。但由於太陽系內部引力場非常弱,引力效應本身就非常小,廣義相對論的理論結果與牛頓引力理論的偏離很小,觀測非常困難。七十年代以來,由於射電天文學的進展,觀測的距離遠遠突破了太陽系,觀測的精度隨之大大提高。特別是1974年9月由麻省理工學院的泰勒和他的學生赫爾斯,用305米口徑的大型射電望遠鏡進行觀測時,發現了脈衝雙星,它是一個中子星和它的伴星在引力作用下相互繞行,周期只有0.323天,它的表面的引力比太陽表面強十萬倍,是地球上甚至太陽系內不可能獲得的檢驗引力理論的實驗室。經過長達十餘年的觀測,他們得到了與廣義相對論的預言符合得非常好的結果。由於這一重大貢獻,泰勒和赫爾斯獲得了1993年諾貝爾物理獎

狹義理論

狹義相對論的概念

《相對論》《相對論》叢書
馬赫和休謨的哲學對愛因斯坦影響很大。馬赫認為時間和空間的量度與物質運動有關。時空的觀念是通過經驗形成的。絕對時空無論依據什麼經驗也不能把握。休謨更具體的說:空間和廣延不是別的,而是按一定次序分布的可見的對象充滿空間。而時間總是又能夠變化的對象的可覺察的變化而發現的。1905年愛因斯坦指出,麥可遜和莫雷實驗實際上說明關於“以太”的整個概念是多餘的,光速是不變的。而牛頓的絕對時空觀念是錯誤的。不存在絕對靜止的參照物,時間測量也是隨參照系不同而不同的。他用光速不變和相對性原理提出了洛侖茲變換。創立了狹義相對論。
狹義相對論是建立在四維時空觀上的一個理論,因此要弄清相對論的內容,要先對相對論的時空觀有個大體了解。在數學上有各種多維空間,人們認識的物理世界只是四維,即三維空間加一維時間。現代微觀物理學提到的高維空間是另一層意思,只有數學意義,在此不做討論。四維時空是構成真實世界的最低維度,我們的世界恰好是四維,至於高維真實空間,至少現在我們還無法感知。我在一個帖子上說過一個例子,一把尺子在三維空間裡(不含時間)轉動,其長度不變,但鏇轉它時,它的各坐標值均發生了變化,且坐標之間是有聯繫的。四維時空的意義就是時間是第四維坐標,它與空間坐標是有聯繫的,也就是說時空是統一的,不可分割的整體,它們是一種“此消彼長”的關係。
四維時空不僅限於此,由質能關係知,質量和能量實際是一回事,質量(或能量)並不是獨立的,而是與運動狀態相關的,比如速度越大,質量越大。在四維時空里,質量(或能量)實際是四維動量的第四維分量,動量是描述物質運動的量,因此質量與運動狀態有關就是理所當然的了。在四維時空里,動量和能量實現了統一,稱為能量動量四矢。另外在四維時空里還定義了四維速度,四維加速度,四維力,電磁場方程組的四維形式等。值得一提的是,電磁場方程組的四維形式更加完美,完全統一了,電場和磁場用一個統一的電磁場張量來描述。四維時空的物理定律比三維定律要完美的多,這說明我們的世界的確是四維的。可以說至少它比牛頓力學要完美的多。至少由它的完美性,我們不能對它妄加懷疑。
相對論中,時間與空間構成了一個不可分割的整體——四維時空,能量動量也構成了一個不可分割的整體——四維動量。這說明自然界一些看似毫不相干的量之間可能存在深刻的聯繫。在今後論及廣義相對論時我們還會看到,時空與能量動量四矢之間也存在著深刻的聯繫。

佯謬問題

時鐘雙生子佯謬

《相對論》《相對論》
相對論誕生後,曾經有一個令人極感興趣的疑難問題—雙生子佯謬。一對雙生子A和B,A在地球上,B乘火箭去做星際旅行,經過漫長歲月返回地球。愛因斯坦由相對論斷言,二人經歷的時間不同,重逢時B將比A年輕。許多人有疑問,認為A看B在運動,B看A也在運動,為什麼不能是A比B年輕呢?由於地球可近似為慣性系,B要經歷加速與減速過程,是變加速運動參考系,真正討論起來非常複雜,因此這個愛因斯坦早已討論清楚的問題被許多人誤認為相對論是自相矛盾的理論。如果用時空圖和世界線的概念討論此問題就簡便多了,只是要用到許多數學知識和公式。在此只是用語言來描述一種最簡單的情形。不過只用語言無法更詳細說明細節,有興趣的請參考一些相對論書籍。我們的結論是,無論在那個參考系中,B都比A年輕。
為使問題簡化,只討論這種情形,火箭經過極短時間加速到亞光速,飛行一段時間後,用極短時間掉頭,又飛行一段時間,用極短時間減速與地球相遇。這樣處理的目的是略去加速和減速造成的影響。在地球參考系中很好討論,火箭始終是動鍾,重逢時B比A年輕。在參考系內,地球在勻速過程中是動鍾,時間進程比火箭內慢,但最關鍵的地方是火箭掉頭的過程。在掉頭過程中,地球由火箭後方很遠的地方經過極短的時間划過半個圓周,到達火箭的前方很遠的地方。這是一個"超光速"過程。只是這種超光速與相對論並不矛盾,這種"超光速"並不能傳遞任何信息,不是真正意義上的超光速。如果沒有這個掉頭過程,火箭與地球就不能相遇,由於不同的參考系沒有統一的時間,因此無法比較他們的,只有在他們相遇時才可以比較。火箭掉頭後,B不能直接接受A的信息,因為信息傳遞需要時間。B看到的實際過程是在掉頭過程中,地球的時間進度猛地加快了。在B看來,A先是比B年輕,接著在掉頭時迅速衰老,返航時,A又比自己衰老的慢了。重逢時,自己仍比A年輕。也就是說,相對論不存在邏輯上的矛盾。

廣義理論

廣義相對論的概念

《相對論》《相對論》叢書
相對論問世,人們看到的結論就是:四維彎曲時空,有限無邊宇宙,引力波,引力透鏡,大爆炸宇宙學說,以及二十一世紀的主鏇律--黑洞等等。這一切來的都太突然,讓人們覺得相對論神秘莫測,因此在相對論問世頭幾年,一些人揚言“全世界只有十二個人懂相對論”。甚至有人說“全世界只有兩個半人懂相對論”。更有甚者將相對論與“通靈術”,“招魂術”之類相提並論。其實相對論並不神秘,它是最腳踏實地的理論,是經歷了千百次實踐檢驗的真理,更不是高不可攀的。
相對論套用的幾何學並不是普通的歐幾里得幾何,而是黎曼幾何。相信很多人都知道非歐幾何,它分為羅氏幾何與黎氏幾何兩種。黎曼從更高的角度統一了三種幾何,稱為黎曼幾何。在非歐幾何里,有很多奇怪的結論。三角形內角和不是180度,圓周率也不是3.14等等。因此在剛出台時,倍受嘲諷,被認為是最無用的理論。直到在球面幾何中發現了它的套用才受到重視。
空間如果不存在物質,時空是平直的,用歐氏幾何就足夠了。比如在狹義相對論中套用的,就是四維偽歐幾里得空間。加一個偽字是因為時間坐標前面還有個虛數單位i。當空間存在物質時,物質與時空相互作用,使時空發生了彎曲,這是就要用非歐幾何。相對論預言了引力波的存在,發現了引力場與引力波都是以光速傳播的,否定了萬有引力定律的超距作用。當光線由恆星發出,遇到大質量天體,光線會重新匯聚,也就是說,我們可以觀測到被天體擋住的恆星。一般情況下,看到的是個環,被稱為愛因斯坦環。
愛因斯坦將場方程套用到宇宙時,發現宇宙不是穩定的,它要么膨脹要么收縮。當時宇宙學認為,宇宙是無限的,靜止的,恆星也是無限的。於是他不惜修改場方程,加入了一個宇宙項,得到一個穩定解,提出有限無邊宇宙模型。不久哈勃發現著名的哈勃定律,提出了宇宙膨脹學說。愛因斯坦為此後悔不已,放棄了宇宙項,稱這是他一生最大的錯誤。在以後的研究中,物理學家們驚奇的發現,宇宙何止是在膨脹,簡直是在爆炸。極早期的宇宙分布在極小的尺度內,宇宙學家們需要研究粒子物理的內容來提出更全面的宇宙演化模型,而粒子物理學家需要宇宙學家們的觀測結果和理論來豐富和發展粒子物理。
物理學中研究最大和最小的兩個目前最活躍的分支:粒子物理學和宇宙學竟這樣相互結合起來。就像高中物理序言中說的那樣,如同一頭怪蟒咬住了自己的尾巴。值得一提的是,雖然愛因斯坦的靜態宇宙被拋棄了,但它的有限無邊宇宙模型卻是宇宙未來三種可能的命運之一,而且是最有希望的。近年來宇宙項又被重新重視起來了。黑洞問題將在今後的文章中討論。黑洞與大爆炸雖然是相對論的預言,它們的內容卻已經超出了相對論的限制,與量子力學,熱力學結合的相當緊密。今後的理論有希望在這裡找到突破口。

相關詞條

相關搜尋

熱門詞條

聯絡我們