tangent

tangent

正切函式是直角三角形中,對邊與鄰邊的比值。放在直角坐標系中(如圖)即 tanθ=y/x Tan 取某個角並返回直角三角形兩個直角邊的比值。此比值是直角三角形中該角的對邊長度與鄰邊長度之比。

簡介

正切即Tan

定義

將角度乘以 π/180 即可轉換為弧度,將弧度乘以 180/π 即可轉換為角度。

在三角函式中:tanθ=sinθ/cosθ; tanθ=1/cotθ.

在Rt△ABC,∠C=90度,AB=c,BC=a,AC=b,tanA=BC/AC=a/b

將一個角放入直角坐標系中

使角的始邊與X軸的非負半軸重合

在角的終邊上找一點A(x,y)

過A做X軸的垂線

則r=(x^2+y^2)^(1/2)

tan =y/x

正切無最大最小值

tanA=∠A的對邊/∠A的鄰邊

誘導公式 tan(2kπ+α)=tan α

tan(π/2-α)=cot α

tan(π/2+α)=-cot α

tan(-α)=-tan α

tan(π+α)=tan α

tan(π-α)=-tan α

兩角和差公式

正切示意圖

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

二倍角公式

tan(2α)=2tanα/(1-tanα^2)

這裡將為大家簡單敘述一下tan的三角函式公式。

三角函式例圖

如右圖。圖中用銳角符號表示出來的兩個角角度均為 α 。

則 tan α=1/3 的意思是

過C、D分別向y軸、x軸作垂線 (C、D為圖中的反比例函式與一條一般直線函式的交點,也為兩個 α 角非坐標軸的邊上的點)

構成含 α 角的直角三角形後,較短直角邊與較長直角邊的比為 1/3 。

相關詞條

相關搜尋

熱門詞條

聯絡我們