隨機貼現因子

隨機貼現因子

隨機貼現因子理論是最一般、最廣泛適用的理論,無套利定價理論和風險中性定價理論均可以由隨機貼現因子理論推導出來。

隨機貼現因子概述[1]

隨機貼現因子理論是最一般、最廣泛適用的理論,無套利定價理論和風險中性定價理論均可以由隨機貼現因子理論推導出來。

隨機貼現因子的基礎

基於消費的跨期資本資產定價模型(ICAPM)。Merton(1973)。
Campbell(2000)通過隨機貼現因子對資產定價問題進行了分析和回顧。
Cochrane(2000)將所有的資產定價問題納入到隨機貼現因子的一般框架之中,建立了一個比較完整的隨機貼現因子理論體系。

隨機貼現因子的定義

如果一個貼現因子,能夠滿足:
p=E(mx)
或者用條件期望的形式:
pt = Et(mt + 1xt + 1)
則我們稱m或mt + 1為隨機貼現因子

隨機貼現因子的提出[1]

提出的基本原則:基於消費的效用最大化
基於消費的資產定價模型認為,代表性投資者的效用來自於消費,其目標是終生效用最大化。為了實現其目標函式,投資者必須將財富在消費和投資之間進行分配。消費是為了滿足現在的效用,而投資則是為了滿足未來效用的需要。 目標函式:


約束條件:
Wt + 1 = (Wt − Ct)Rt + 1 + et + 1

隨機貼現因子和一價定律

定義:如果未來收益相同的資產具有相同的價格,則我們稱一價定律成立。
定理1:一價定律等價於資產組合的價格是資產價格的線性組合。
定理2: 如果存在一個隨機貼現因子,則一價定律成立。
定理3: 如果一價定律成立,則市場上存在一個隨機貼現因子能夠對資產定價。

隨機貼現因子和其他定價模型

從隨機貼現因子也可以十分簡單地推出貝塔定價模型。
從隨機貼現因子理論中,還可以十分容易地推導出均值方差有限前沿理論。
CAPM理論、APT模型等,都可以在上述分析的基礎上通過進一步演化得到。因此,總的來說,隨機貼現因子理論為資產定價提供了一個最一般、最通用的分析框架。

相關詞條

相關搜尋

熱門詞條

聯絡我們