絕對值不等式

絕對值不等式

在不等式套用中,經常涉及質量、面積、體積等,也涉及某些數學對象(如實數、向量)的大小或絕對值。它們都是通過非負數來度量的。 公式:||a|-|b|| ≤|a±b|≤|a|+|b|

基本信息

性質

絕對值不等式 絕對值不等式

|a|表示數軸上的點a與原點的距離叫做數a的絕對值。

兩個重要性質:

1、|ab| = |a||b|

|a/b| = |a|/|b| (b≠0)

2、|a|<|b| 可逆推出 |b|>|a|

||a| - |b|| ≤ |a+b| ≤ |a|+|b|,若且唯若 ab≤0 時左邊等號成立,ab≥0 時右邊等號成立。

另外有:|a-b| ≤ |a|+|-b| = |a|+|-1|*|b| = |a|+|b|

| |a|-|b| | ≤ |a±b| ≤ |a|+|b|

幾何意義

1、當a,b同號時它們位於原點的同一邊,此時a與﹣b的距離等於它們到原點的距離之和。

2、當a,b異號時它們分別位於原點的兩邊,此時a與﹣b的距離小於它們到原點的距離之和。(|a-b|表示a-b與原點的距離,也表示a與b之間的距離)

相關公式

絕對值重要不等式推導過程 :

我們知道|x|={x,(x>0);x,(x=0);-x,(x<0);

因此,有:

-|a|≤a≤|a| ......①

-|b|≤b≤|b| ......②

-|b|≤-b≤|b|......③

由①+②得:

-(|a|+|b|)≤a+b≤|a|+|b|

即 |a+b|≤|a|+|b| ......④

由①+③得:

-(|a|+|b|)≤a-b≤|a|+|b|

即 |a-b|≤|a|+|b| ......⑤

另:

|a|=|(a+b)-b|=|(a-b)+b|

|b|=|(b+a)-a|=|(b-a)+a|

由④知:

|a|=|(a+b)-b|≤|a+b|+|-b| => |a|-|b|≤|a+b|.......⑥

|b|=|(b+a)-a|≤|b+a|+|-a| => |a|-|b|≥-|a+b|.......⑦

|a|=|(a-b)+b|≤|a-b|+|b| => |a|-|b|≤|a-b|.......⑧

|b|=|(b-a)+a|≤|b-a|+|a| => |a|-|b|≥-|a-b|.......⑨

由⑥,⑦得:

| |a|-|b| |≤|a+b|......⑩

由⑧,⑨得:

| |a|-|b| |≤|a-b|......⑪

綜合④⑤⑩⑪得到有關 絕對值(absolute value)的重要不等式:|a|-|b|≤|a±b|≤|a|+|b|

要注意等號成立的條件(特別是求最值),即:

|a-b|=|a|+|b|→ab≤0

|a|-|b|=|a+b|→b(a+b)≤0

|a|-|b|=|a-b|→b(a-b)≥0

註:|a|-|b|=|a+b|→|a|=|a+b|+|b|→|(a+b)-b|=|a+b|+|b|→b(a+b)≤0

同理可得|a|-|b|=|a-b|→b(a-b)≥0

另 “→”指可雙向推出

解法

解決與絕對值有關的問題(如解絕對值不等式,解絕對值方程,研究含有絕對值符號的函式等等),其關鍵往往在於去掉絕對值符號。而去掉絕對值符號的基本方法有二。

以下,具體說說絕對值不等式的解法:

其一為平方,所謂平方,比如,|x|=3,可化為x^2=9,絕對值符號沒有了!

其二為討論,所謂討論,即x≥0時,|x|=x ;x<0時,|x|=-x,絕對值符號也沒有了!

說到討論,就是令絕對值中的式子等於0,分出x的段,然後根據每段討論得出的x值,取交集,綜上所述即可。

其三為數形結合法,即在數軸上將各點畫出,將數轉換為長度的概念求解。

相關詞條

相關搜尋

熱門詞條

聯絡我們