定義
![本原多項式](/img/0/b23/wZwpmLzgjNwEzNxQDN0MTN1UTM1QDN5MjM5ADMwAjMwUzL0QzLxUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![本原多項式](/img/5/017/wZwpmLxYzM2AzMxMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLyUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![本原多項式](/img/e/394/wZwpmLzADM2cjN0kTN0MTN1UTM1QDN5MjM5ADMwAjMwUzL5UzLyczLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![本原多項式](/img/3/78e/wZwpmLyMDNzQDM5EjNxADN0UTMyITNykTO0EDMwAjMwUzLxYzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![本原多項式](/img/5/017/wZwpmLxYzM2AzMxMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLyUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![本原多項式](/img/b/41a/wZwpmL4ADM4QDN0cjN0MTN1UTM1QDN5MjM5ADMwAjMwUzL3YzLygzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
設是唯一分解整環 上的多項式,如果 ,則稱 為 上的一個本原多項式 。(符號表示最大公約數)
本原多項式滿足以下條件:
![本原多項式](/img/3/78e/wZwpmLyMDNzQDM5EjNxADN0UTMyITNykTO0EDMwAjMwUzLxYzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
1)是既約的,即不能再分解因式;
![本原多項式](/img/3/78e/wZwpmLyMDNzQDM5EjNxADN0UTMyITNykTO0EDMwAjMwUzLxYzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![本原多項式](/img/8/39d/wZwpmL4YjM1QTN4ADN0MTN1UTM1QDN5MjM5ADMwAjMwUzLwQzLxUzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![本原多項式](/img/d/030/wZwpmLzATO2QjN2gjN0MTN1UTM1QDN5MjM5ADMwAjMwUzL4YzLwIzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
2)可整除,這裡的;
![本原多項式](/img/3/78e/wZwpmLyMDNzQDM5EjNxADN0UTMyITNykTO0EDMwAjMwUzLxYzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![本原多項式](/img/7/572/wZwpmLyYDN2kzNwITN0MTN1UTM1QDN5MjM5ADMwAjMwUzLyUzL3AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![本原多項式](/img/b/2f9/wZwpmL0YTNwYDOxMDN0MTN1UTM1QDN5MjM5ADMwAjMwUzLzQzL4QzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
3)不能整除,這裡。
定理
高斯引理:本原多項式的乘積還是本原多項式。
![本原多項式](/img/0/b23/wZwpmLzgjNwEzNxQDN0MTN1UTM1QDN5MjM5ADMwAjMwUzL0QzLxUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![本原多項式](/img/2/3e2/wZwpmLxczM4cjN2EjNwYjN1UTM1QDN5MjM5ADMwAjMwUzLxYzL2IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
證明:設 和 分別是n次與m次的本原多項式。
![本原多項式](/img/b/54a/wZwpmLxUDN3UDM2ATNwYjN1UTM1QDN5MjM5ADMwAjMwUzLwUzLzEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
令
![本原多項式](/img/8/959/wZwpmL0gzN2EDN3YDOwYjN1UTM1QDN5MjM5ADMwAjMwUzL2gzL4YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
其中
![本原多項式](/img/c/4df/wZwpmLxcDN3QzNxEDOwYjN1UTM1QDN5MjM5ADMwAjMwUzLxgzLzEzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![本原多項式](/img/a/f8d/wZwpmLyADN1MTNyYDOwYjN1UTM1QDN5MjM5ADMwAjMwUzL2gzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
這裡,當s>n或t>m時,規定 及 。
![本原多項式](/img/8/b46/wZwpmLwIDMwYDNwIDN3UzM1UTM1QDN5MjM5ADMwAjMwUzLyQzL0MzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![本原多項式](/img/5/017/wZwpmLxYzM2AzMxMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLyUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![本原多項式](/img/5/fa3/wZwpmL2ADOzEDMwUTMwEDN0UTMyITNykTO0EDMwAjMwUzL1EzL1gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![本原多項式](/img/5/69b/wZwpmLzIDMxMDN3QTOwYjN1UTM1QDN5MjM5ADMwAjMwUzL0kzL0IzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![本原多項式](/img/5/3ed/wZwpmL2MDO2kzN1cDNwYjN1UTM1QDN5MjM5ADMwAjMwUzL3QzL1czLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![本原多項式](/img/5/fa3/wZwpmL2ADOzEDMwUTMwEDN0UTMyITNykTO0EDMwAjMwUzL1EzL1gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![本原多項式](/img/9/4a2/wZwpmL3MDM3kzMwkzMxYjM1UTM1QDN5MjM5ADMwAjMwUzL5MzL0gzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
假定 不是本原的,則存在 上的不可約元 ,使。(式表示整除)
![本原多項式](/img/6/fb5/wZwpmL3IzMwYTNzETNwYjN1UTM1QDN5MjM5ADMwAjMwUzLxUzL2EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![本原多項式](/img/3/912/wZwpmLxMDO2czM0gjNxMzM1UTM1QDN5MjM5ADMwAjMwUzL4YzLzYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![本原多項式](/img/0/3dd/wZwpmL1YTOzQTO5gjNwYjN1UTM1QDN5MjM5ADMwAjMwUzL4YzLxAzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![本原多項式](/img/5/fa3/wZwpmL2ADOzEDMwUTMwEDN0UTMyITNykTO0EDMwAjMwUzL1EzL1gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![本原多項式](/img/0/8af/wZwpmL1MzM5kjN3ADO3EDN0UTMyITNykTO0EDMwAjMwUzLwgzLyAzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![本原多項式](/img/5/a5d/wZwpmL2ITOxAzN3kTN0MTN1UTM1QDN5MjM5ADMwAjMwUzL5UzL4gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
已知 ,設 及 中最先一個不能被整除的元素分別為 與 ,則
![本原多項式](/img/0/c66/wZwpmL0gjM3QDM3UjNwYjN1UTM1QDN5MjM5ADMwAjMwUzL1YzLzUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![本原多項式](/img/9/f60/wZwpmL1ATO4EDO1czNwYjN1UTM1QDN5MjM5ADMwAjMwUzL3czLzUzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![本原多項式](/img/8/4df/wZwpmLwYTNwUjNzkTNwYjN1UTM1QDN5MjM5ADMwAjMwUzL5UzLyUzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![本原多項式](/img/5/fa3/wZwpmL2ADOzEDMwUTMwEDN0UTMyITNykTO0EDMwAjMwUzL1EzL1gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![本原多項式](/img/0/8af/wZwpmL1MzM5kjN3ADO3EDN0UTMyITNykTO0EDMwAjMwUzLwgzLyAzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![本原多項式](/img/5/a5d/wZwpmL2ITOxAzN3kTN0MTN1UTM1QDN5MjM5ADMwAjMwUzL5UzL4gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![本原多項式](/img/5/fa3/wZwpmL2ADOzEDMwUTMwEDN0UTMyITNykTO0EDMwAjMwUzL1EzL1gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![本原多項式](/img/5/3f7/wZwpmL3MTO3IDN3YDNwYjN1UTM1QDN5MjM5ADMwAjMwUzL2QzL4IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![本原多項式](/img/5/fa3/wZwpmL2ADOzEDMwUTMwEDN0UTMyITNykTO0EDMwAjMwUzL1EzL1gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![本原多項式](/img/a/1bd/wZwpmLzgTMzkTM1MzNwYjN1UTM1QDN5MjM5ADMwAjMwUzLzczLxEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
因為且,而 不整除 、 ,所以 不整除 ,這與能整除矛盾。
![本原多項式](/img/8/b46/wZwpmLwIDMwYDNwIDN3UzM1UTM1QDN5MjM5ADMwAjMwUzLyQzL0MzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
這就證明了 為本原多項式。
套用
1)在MATLAB中,本原多項式可以通過函式primpoly(x)來產生。
2)在MATLAB中,通過函式gfprimfd(m,'min')可以找到一個最小的本原多項式。