相關詞條
-
拉普拉斯變換
拉普拉斯變換是工程數學中常用的一種積分變換,又名拉氏變換。 [1] 拉氏變換是一個線性變換,可將一個有參數實數t(t≥ 0)的函式轉換為一個參數為複數s...
發展歷史 公式概念 基本性質 套用領域定理 意義與作用 -
拉普拉斯定律
拉普拉斯(Laplace)定律 P=2T/r 。 P 代表肺泡回縮力,T代表表面張力,r代表肺泡半徑。肺回縮力與表面張力成正比,與肺泡的半徑成反比。
定律介紹 套用 定理 意義與作用 發展歷史 -
拉普拉斯變換法
拉普拉斯變換法(method of Laplace transform)求解常係數線性常微分方程的一個重要方法。 運用拉普拉斯變換將常係數線性常微分方程...
形式定義 逆變換 性質和定理 套用實例 工程學的套用 -
傅立葉變換
傅立葉變換,表示能將滿足一定條件的某個函式表示成三角函式(正弦和/或餘弦函式)或者它們的積分的線性組合。在不同的研究領域,傅立葉變換具有多種不同的變體形...
概念: 基本性質 不同變種 相關 例子 -
拉普拉斯-貝爾特拉米運算元
在微分幾何中,拉普拉斯運算元可以推廣為定義在曲面,或更一般地黎曼流形與偽黎曼流形上,函式的運算元。這個更一般的運算元叫做拉普拉斯-貝爾特拉米運算元(Laplac...
定義 拉普拉斯-德拉姆運算元 張量上的拉普拉斯運算元 例子 相關條目 -
Z變換
Z變換(英文:z-transformation)可將時域信號(即:離散時間序列)變換為在復頻域的表達式。它在離散時間信號處理中的地位,如同拉普拉斯變換在...
歷史 描述 性質 常用變換對 逆變換 -
積分變換
積分變換無論在數學理論或其套用中都是一種非常有用的工具。最重要的積分變換有傅立葉變換、拉普拉斯變換。由於不同套用的需要,還有其他一些積分變換,其中套用較...
積分變換的定義 典型積分變換 積分的分類 同名圖書《積分變換》 -
拉普拉斯逆變換
拉普拉斯逆變換為當已知信號函式x(t)的拉普拉斯變換X(s),求解信號的時域表達式x(t)。
定義 常用方法 -
拉布拉斯變換
拉普拉斯變換是工程數學中常用的一種積分變換。
主要形式 定義 套用 相關條目