夾逼準則

夾逼準則

英文原名Squeeze Theorem,也稱兩邊夾定理、夾逼準則、夾擠定理、挾擠定理、三明治定理,是判定極限存在的兩個準則之一,是函式極限的定理6。

基本信息

定義

夾逼定理夾逼定理
一.如果數列{Xn},{Yn}及{Zn}滿足下列條件:
(1)當n>No時,其中No∈N*,有Yn≤Xn≤Zn,
(2)當n→+∞,limYn=a;當n→+∞,limZn=a,
那么,數列{Xn}的極限存在,且當n→+∞,limXn=a。
證明因為limYn=alimZn=a所以根據數列極限的定義,對於任意給定的正數ε,存在正整數N1,N2,當n>N1時,有〡Yn-a∣﹤ε,當n>N2時,有∣Zn-a∣﹤ε,現在取N=max{No,N1,N2},則當n>N時,∣Yn-a∣<ε,∣Zn-a∣<ε同時成立,且Yn≤Xn≤Zn,即a-ε<Yn<a+ε,a-ε<Zn<a+ε,有a-ε<Yn≤Xn≤Zn<a+ε,即∣Xn-a∣<ε成立。也就是說
limXn=a
二.函式的夾逼定理
F(x)與G(x)在Xo連續且存在相同的極限A,即x→Xo時,limF(x)=limG(x)=A
則若有函式f(x)在Xo的某鄰域內恆有
F(x)≤f(x)≤G(x)
則當X趨近Xo,有limF(x)≤limf(x)≤limG(x)
即 A≤limf(x)≤A
故limf(Xo)=A
簡單的說:函式A>B,函式B>C,函式A的極限是X,函式C的極限也是X,那么函式B的極限就一定是X,這個就是夾逼定理。

套用

1.設{Xn},{Zn}為收斂數列,且:當n趨於無窮大時,數列{Xn},{Zn}的極限均為:a.
若存在N,使得當n>N時,都有Xn≤Yn≤Zn,則數列{Yn}收斂,且極限為a.
2.夾逼準則適用於求解無法直接用極限運算法則求極限的函式極限,間接通過求得F(x)和G(x)的極限來確定
f(x)的極限

相關詞條

相關搜尋

熱門詞條

聯絡我們