三角公式

三角公式

三角函式是數學中屬於初等函式中的超越函式的一類函式。它們的本質是任何角的集合與一個比值的集合的變數之間的映射。通常的三角函式是在平面直角坐標系中定義的。其定義域為整個實數域。另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到複數系。三角函式看似很多,很複雜,但只要掌握了三角函式的本質及內部規律就會發現三角函式各個公式之間有強大的聯繫。而掌握三角函式的內部規律及本質也是學好三角函式的關鍵所在。

基本信息

三角函式誘導公式

常用的誘導公式有以下幾組:

公式一

設α為任意角,終邊相同的角的同一三角函式的值相等:

三角公式三角公式
三角公式三角公式
三角公式三角公式
三角公式三角公式

公式二

設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三

任意角α與-α的三角函式值之間的關係:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四

利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五

利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六

π/2±α與α的三角函式值之間的關係:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

其他三角函式知識

同角三角函式基本關係

⒈同角三角函式的基本關係式

倒數關係:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商的關係:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方關係:

三角公式三角公式
三角公式三角公式
三角公式三角公式

同角三角函式關係六角形記憶法

六角形記憶法:(參看圖片或參考資料連結)

構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

(1)倒數關係:對角線上兩個函式互為倒數;

(2)商數關係:六邊形任意一頂點上的函式值等於與它相鄰的兩個頂點上函式值的乘積。

(主要是兩條虛線兩端的三角函式值的乘積)。由此,可得商數關係式。

(3)平方關係:在帶有陰影線的三角形中,上面兩個頂點上的三角函式值的平方和等於下面頂點上的三角函式值的平方。

兩角和差公式

⒉兩角和與差的三角函式公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanα ·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)

倍角公式

⒊二倍角的正弦、餘弦和正切公式(升冪縮角公式)

三角公式三角公式
三角公式三角公式
三角公式三角公式

半角公式

⒋半角的正弦、餘弦和正切公式(降冪擴角公式)

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

萬能公式

⒌萬能公式

sinα=[2tan(α/2)]/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=[2tan(α/2)]/[1-tan^2(α/2)]

萬能公式推導

附推導:

sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,

(因為cos^2(α)+sin^2(α)=1)

再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))

然後用α/2代替α即可。

同理可推導餘弦的萬能公式。正切的萬能公式可通過正弦比餘弦得到。

三倍角公式

⒍三倍角的正弦、餘弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

三倍角公式推導

附推導:

tan3α=sin3α/cos3α

=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

上下同除以cos^3(α),得:

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

=2sinαcos^2(α)+(1-2sin^2(α))sinα

=2sinα-2sin^3(α)+sinα-2sin^3(α)

=3sinα-4sin^3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

=(2cos^2(α)-1)cosα-2cosαsin^2(α)

=2cos^3(α)-cosα-(2cosα-2cos^3(α))

=4cos^3(α)-3cosα

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

三倍角公式聯想記憶

記憶方法:諧音、聯想

正弦三倍角:3元減4元3角(欠債了(被減成負數),所以要“掙錢”(音似“正弦”))

餘弦三倍角:4元3角減3元(減完之後還有“余”)

☆☆注意函式名,即正弦的三倍角都用正弦表示,餘弦的三倍角都用餘弦表示。

和差化積公式

⒎三角函式的和差化積公式

sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

積化和差公式

⒏三角函式的積化和差公式

sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]

cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]

cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]

sinα ·sinβ=-0.5[cos(α+β)-cos(α-β)]

和差化積公式推導

附推導:

首先,我們知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb

我們把兩式相加就得到sin(a+b)+sin(a-b)=2sina*cosb

所以,sina*cosb=(sin(a+b)+sin(a-b))/2

同理,若把兩式相減,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2

同樣的,我們還知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb

所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa*cosb

所以我們就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2

同理,兩式相減我們就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

這樣,我們就得到了積化和差的四個公式:

sina*cosb=(sin(a+b)+sin(a-b))/2

cosa*sinb=(sin(a+b)-sin(a-b))/2

cosa*cosb=(cos(a+b)+cos(a-b))/2

sina*sinb=-(cos(a+b)-cos(a-b))/2

好,有了積化和差的四個公式以後,我們只需一個變形,就可以得到和差化積的四個公式.

我們把上述四個公式中的a+b設為x,a-b設為y,那么a=(x+y)/2,b=(x-y)/2

把a,b分別用x,y表示就可以得到和差化積的四個公式:

sinx+siny=2sin((x+y)/2)*cos((x-y)/2)

sinx-siny=2cos((x+y)/2)*sin((x-y)/2)

cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

輔助角公式

對於acosx+bsinx型函式,我們可以如此變形acosx+bsinx=√(a^2+b^2)(acosx/√(a^2+b^2)+bsinx/√(a^2+b^2)),令點(b,a)為某一角φ終邊上的點,則sinφ=a/√(a^2+b^2),cosφ=b/√(a^2+b^2)

∴acosx+bsinx=√(a^2+b^2)sin(x+arctan(a/b))

這就是輔助角公式

相關詞條

相關搜尋

熱門詞條

聯絡我們