定理概述
如圖,設平面 α外的△ABC在平面 α內的射影為△ABO,分別記△ABC的面積和△ABO的面積為S和S′,記△ABC所在平面和平面α所成的二面角為θ,則 cosθ=S′︰S.
證明
定理證明思路:因為射影就是將原圖形的長度(三角形中稱高)縮放,所以寬度是不變的,又因為平面多邊形的面積比=邊長的平方比。所以就是圖形的長度(三角形中稱高)的比。那么這個比值應該是平面所成角的餘弦值。在兩平面中作一直角三角形,並使斜邊和一直角邊垂直於棱(即原多邊形圖的平面和射影平面的交線),那么三角形的斜邊和另一直角邊就是其多邊形的長度比,即為平面多邊形的面積比,而將這個比值放到該平面三角形中去運算,即可。
證明:如上圖,作△ABC的AB邊上的高CD,垂足為D,連OD,易知OD⊥AB,故∠CDO即為二面角C-AB-O的平面角,即∠CDO=θ.