列車簡介
磁懸浮列車利用電磁體“同性相斥”的原理,讓磁鐵具有抗拒地心引力的能力,使車體完全脫離軌道,懸浮在距離軌道約1厘米處,騰空行駛,創造了近乎“零高度”空間飛行的奇蹟。由於磁鐵有同性相斥和異性相吸兩種形式,故磁懸浮列車也有兩種相應的形式:一種是利用磁鐵同性相斥原理而設計的電磁運行系統的磁懸浮列車,它利用車上超導體電磁鐵形成的磁場與軌道上線圈形成的磁場之間所產生的相斥力,使車體懸浮運行的鐵路;另一種則是利用磁鐵異性相吸原理而設計的電動力運行系統的磁懸浮列車,它是在車體底部及兩側倒轉向上的頂部安裝磁鐵,在T形導軌的上方和伸臂部分下方分別設反作用板和感應鋼板,控制電磁鐵的電流,使電磁鐵和導軌間保持10—15毫米的間隙,並使導軌鋼板的排斥力與車輛的重力平衡,從而使車體懸浮於車道的導軌面上運行。
通俗的講就是,在位於軌道兩側的線圈裡流動的交流電,能把線圈變為電磁體。由於它與列車上的超導電磁體的相互作用,就使列車開動起來。列車前進是因為列車頭部的電磁體(N極)被安裝在靠前一點的軌道上的電磁體(S極)所吸引,並且同時又被安裝在軌道上稍後一點的電磁體(N極)所排斥。當列車前進時,線上圈裡流動的電流流向就反轉過來了。其結果就是原來那個S極線圈,變為N極線圈了,反之亦然。這樣,列車由於電磁極性的轉換而得以持續向前賓士。根據車速,通過電能轉換器調整線上圈裡流動的交流電的頻率和電壓。
穩定性由導向系統來控制。“常導型磁吸式”導向系統,是在列車側面安裝一組專門用於導向的電磁鐵。列車發生左右偏移時,列車上的導向電磁鐵與導向軌的側面相互作用,產生排斥力,使車輛恢復正常位置。列車如運行在曲線或坡道上時,控制系統通過對導向磁鐵中的電流進行控制,達到控制運行目的。
常導型
磁懸浮列車的構想由德國工程師赫爾曼·肯佩爾於1922年提出。
列車動能
“常導型”磁懸浮列車及軌道和電動機的工作原理完全相同。只是把電動機的“轉子”布置在列車上,把電動機的“定子”鋪設在軌道上。通過“轉子”,“定子”間的相互作用,把電能轉化為前進的動能。電動機的“定子”通電時,通過電磁感應就可以推動“轉子”轉動。當向軌道這個“定子”輸電時,通過電磁感應作用,列車就像電動機的“轉子”一樣被推動著做直線運動。
技術系統
磁懸浮列車主要由懸浮系統、推進系統和導向系統三大部分組成,儘管可以使用與磁力無關的推進系統,但在絕大部分設計中,這三部分的功能均由磁力來完成。
懸浮系統
懸浮系統的設計,可以分為兩個方向,分別是德國所採用的常導型和日本所採用的超導型。從懸浮技術上講就是電磁懸浮系統(EMS)和電力懸浮系統(EDS)。圖4給出了兩種系統的結構差別。
(EMS)是一種吸力懸浮系統,是結合在機車上的電磁鐵和導軌上的鐵磁軌道相互排斥產生懸浮。常導磁懸浮列車工作時,首先調整車輛下部的懸浮和導向電磁鐵的電磁排斥力,與地面軌道兩側的繞組發生磁鐵反作用將列車浮起。在車輛下部的導向電磁鐵與軌道磁鐵的反作用下,使車輪與軌道保持一定的側向距離,實現輪軌在水平方向和垂直方向的無接觸支撐和無接觸導向。車輛與行車軌道之間的懸浮間隙為10毫米,是通過一套高精度電子調整系統得以保證的。此外由於懸浮和導向實際上與列車運行速度無關,所以即使在停車狀態下列車仍然可以進入懸浮狀態。
(EDS)將磁鐵使用在運動的機車上以在導軌上產生電流。由於機車和導軌的縫隙減少時電磁斥力會增大,從而產生的電磁斥力提供了穩定的機車的支撐和導向。然而機車必須安裝類似車輪一樣的裝置對機車在“起飛”和“著陸”時進行有效支撐,這是因為EDS在機車速度低於大約55公里/小時無法保證懸浮。EDS系統在低溫超導技術下得到了更大的發展。
超導磁懸浮列車的最主要特徵就是其超導元件在相當低的溫度下所具有的完全導電性和完全抗磁性。超導磁鐵是由超導材料製成的超導線圈構成,它不僅電流阻力為零,而且可以傳導普通導線根本無法比擬的強大電流,這種特性使其能夠製成體積小功率強大的電磁鐵。
超導磁懸浮列車的車輛上裝有車載超導磁體並構成感應動力集成設備,而列車的驅動繞組和懸浮導向繞組均安裝在地面導軌兩側,車輛上的感應動力集成設備由動力集成繞組、感應動力集成超導磁鐵和懸浮導向超導磁鐵三部分組成。當向軌道兩側的驅動繞組提供與車輛速度頻率相一致的三相交流電時,就會產生一個移動的電磁場,因而在列車導軌上產生磁波,這時列車上的車載超導磁體就會受到一個與移動磁場相同步的推力,正是這種推力推動列車前進。其原理就像衝浪運動一樣,衝浪者是站在波浪的頂峰並由波浪推動他快速前進的。與衝浪者所面對的難題相同,超導磁懸浮列車要處理的也是如何才能準確地駕馭在移動電磁波的頂峰運動的問題。為此,在地面導軌上安裝有探測車輛位置的高精度儀器,根據探測儀傳來的信息調整三相交流電的供流方式,精確地控制電磁波形以使列車能良好地運行。
推進系統
磁懸浮列車的驅動運用同步直線電動機的原理。車輛下部支撐電磁鐵線圈的作用就像是同步直線電動機的勵磁線圈,地面軌道內側的三相移動磁場驅動繞組起到電樞的作用,它就像同步直線電動機的長定子繞組。從電動機的工作原理可以知道,當作為定子的電樞線圈有電時,由於電磁感應而推動電機的轉子轉動。同樣,當沿線布置的變電所向軌道內側的驅動繞組提供三相調頻調幅電力時,由於電磁感應作用承載系統連同列車一起就像電機的“轉子”一樣被推動做直線運動。從而在懸浮狀態下,列車可以完全實現非接觸的牽引和制動。
導向系統
導向系統是一種側向力來保證懸浮的機車能夠沿著導軌的方向運動。必要的推力與懸浮力相類似,也可以分為引力和斥力。在機車底板上的同一塊電磁鐵可以同時為導向系統和懸浮系統提供動力,也可以採用獨立的導向系統電磁鐵。
列車動能
“常導型”磁懸浮列車及軌道和電動機的工作原理完全相同。是把電動機的“轉子”布置在列車上,將電動機的“定子”鋪設在軌道上。通過“轉子”,“定子”間的相互作用,將電能轉化為前進的動能。我們知道,電動機的“定子”通電時,通過電流對磁場的作用就可以推動“轉子”轉動。不過耗電量巨大,就像一個個電動機鋪滿軌道,當向軌道這個“定子”輸電時,通過電流對磁場的作用,列車就像電動機的“轉子”一樣被推動著做直線運動。
現存系統
磁浮技術分為軌道、車輛、牽引、運行控制四大系統,有16項核心技術。德國、日本與中國為世界上目前有磁浮列車試驗或營運路線的國家。
正在測試項目
——美國聖迭戈:美國通用原子公司在聖迭戈建造了一條長120米的磁懸浮軌道,目的是為聯合太平洋鐵路公司將要在洛杉磯建造的一條8公里的運載線路提供測試。
——德國埃姆斯蘭縣:Transrapid擁有31.5公里的軌道,定期運行的速度最高達420公里每小時。
——日本JR磁浮:日本研發的超導體磁浮列車由東海旅客鐵道(JR東海)和鐵道總合技術研究所(JR總研)主導。首列實驗列車JR-MaglevMLX01從1970年代開始研發,並且在山梨縣建造了五節車廂的實驗車和軌道。在2003年12月2日最高速達到581km/h(361mph)。在2015年更創下了603/h的速度,創下有車廂車輛的陸地極速。
——美國聯邦運輸管理局(FTA)城市磁浮技術示範(UMTD)計畫
——中國西南交通大學:2003年,西南交大在四川成都青山磁懸浮列車線完工,該磁懸浮試驗軌道長420米,主要針對觀光遊客,票價低於出租轎車費。
運營系統
——日本:日本東部丘陵線
——中國上海:上海磁浮示範運營線
——韓國仁川:仁川機場磁懸浮線
——中國長沙:長沙中低速磁浮線
建設中系統
——美國喬治亞州:PowderSprings:AMTTestTrack
——日本:東京-名古屋-大阪中央新幹線
——中國北京:北京S1號線
運行時速歷史
1971年:西德,Prinzipfahrzeug,90km/h
1971年:西德,TR—02(TSST)—164km/h
1972年:日本,ML100,60km/h,(載人)
1973年:西德,TR04,250km/h(載人)
1974年:西德,EET—01,230km/h(無人)
1975年:西德,Komet,401.3km/h(由蒸汽火箭推進,無人)
1978年:日本,HSST—01,307.8km/h(由蒸汽火箭推進,日產汽車製造,無人)
1978年:日本,HSST—02,110km/h(載人)
1979年12月12日:日本,ML—500R,504km/h(無人)第一次突破500km/h
1979年12月21日:日本,ML—500R,517km/h(無人)
1987年:西德,TR—06,406km/h(載人)
1987年:日本,MLU001,400.km/h(載人)
1988年:西德,TR—06,412.6km/h(載人)
1989年:西德,TR—07,436km/h(載人)
1993年:德國,TR—07,450km/h(載人)
1994年:日本,MLU002N,431km/h(無人)
1997年:日本,MLX01,531km/h(載人)
1997年:日本,MLX01,550km/h(無人)
1999年:日本,MLX01,548km/h(無人)
1999年:日本,MLX01,552km/h(載人/5輛編組)金氏世界紀錄認可
2003年:中國,TransrapidSMT(德國提供技術所建設,第一條商業運行路線),501.5km/h
2003年:日本,MLX01,581km/h(載人/3輛編組)金氏世界紀錄認可
2015年:日本,L0,590km/h(載人/7輛編組)
2015年4月:日本,L0,603km/h(載白鼠/7輛編組)
乘坐感官
磁懸浮列車的車窗是安全玻璃,乘客可以更好的觀賞窗外的風景。減速玻璃在與車體接觸的邊緣處有弧度變形,正因為這個弧度可以使車外景物在透過弧度時發生變形,從而影響車內乘客的視覺,產生視覺上的減速的效果。快速行駛時人員會耳鳴難受心慌心悸,在擋風玻璃邊緣都有漸淡的點狀黑色裝飾邊,同樣也起到一定高阻效果。
列車類型
“空軌磁懸浮”的軌道由鋼架支起,在車的正上方,遠遠看去,就像是車被懸掛在空中一樣。磁懸浮列車是由無接觸的電磁懸浮、導向和驅動系統組成的新型交通工具,磁懸浮列車分為超導型和常導型兩大類。簡單地說,從內部技術而言,兩者在系統上存在著是利用磁斥力、還是利用磁吸力的區別。
實用型
2005年7月,首輛中低速磁懸浮工程化樣車在唐車公司問世,並投入試驗運行。
2008年5月,唐車公司建成了長達1.547公里的國內首條中低速磁懸浮列車工程化試驗示範線,科技部將其確立為國家科技支撐計畫中低速磁懸浮交通試驗基地,導致深圳市民一致謾罵反對。
2009年5月13日,國內首列具有完全自主智慧財產權的實用型中低速磁懸浮列車在唐車公司完成組裝,順利下線,並隨即開始進行列車調試。該車在原有工程化樣車基礎上進行了大量實用化改進,整列車為3輛編組模式,由2輛結構相同的端車和1輛中間車組成,運行時速為100到120公里,首尾車定員為每輛100人,中間車為120人,使用壽命在25年以上。該車採用鋁合金車體、寬幅車身,供電電壓由直流750伏提高到直流1500伏,爬坡能力達到70‰的水平,更加適合在城市複雜線路運行,並幅降低了線路建設拆遷成本。
其他類型
利用磁鐵吸引力使車輛浮起來的磁懸浮列車,用的是“T”形導軌,車輛的兩側下部嚮導軌的兩邊環抱。在車輛的下部的內翻部分面上裝有磁力強大的電磁鐵,導軌底部設有鋼板。鋼板在上,電磁鐵在下。 所謂電磁鐵,就是一個金屬線圈,當電流流經線圈時,能產生磁力吸引鋼板,因而車輛被向上抬舉。當吸引力與車輛重力平衡,車輛就可懸浮在導軌上方的一定高度上。改變電流,也就改變磁場強度,使懸浮的高度得到調整。另一種磁懸浮列車,採用相斥磁力使車輛浮起。它的軌道是“U”形的。當列車向前運動時,車輛下面的電磁鐵就使埋在軌道內的線圈中感應出電流,使軌道內線圈也變成了電磁鐵,而且它與車輛下的磁鐵產生相斥的磁力,把車輛向上推離軌道。
利用相斥磁力懸浮的列車,一開動很快就可以加速到時速50公里/小時,跑了100米的距離之後,便在軌道上懸浮起來。列車沿著地面越“飛”越快,最高可達每小時350公里(理論上可以到更高速)。
國產列車
西南交通大學在2000年研製的世界第一輛載人高溫超導磁懸浮列車“世紀號”以及後來研製的載人常溫常導磁懸浮列車“未來號”等受到黨和領導人的高度關注和充分肯定。據介紹,早在1994年,西南交大就研製成功中國第一輛可載人常導低速磁浮列車,但那是在完全理想的實驗室條件下運行成功的。2003年,西南交大在四川成都青山磁懸浮列車線完工,該磁懸浮試驗軌道長420米,主要針對觀光遊客,票價低於計程車費。懸浮列車的原理並不深奧。它是運用磁鐵“同名磁極相斥,異名磁極相吸”的性質,使磁鐵具有抗拒地心引力的能力,即“磁性懸浮”。科學家將“磁性懸浮”這種原理運用在鐵路運輸系統上,使列車完全脫離軌道而懸浮行駛,成為“無輪”列車,時速可達幾百公里以上。這就是所謂的“磁懸浮列車”,亦稱之為“磁墊車”。
磁懸浮列車在磁力作用下,使車輛浮起,並沿著特殊的導軌運行。有速度快噪音低費用低等特點。
上海磁懸浮列車是中國第一條磁懸浮列車, 設計時速430公里/小時,實際時速約380公里/小時,轉彎處半徑達8000米。為我國實驗磁懸浮列車積累了經驗。
關鍵技術
EMS
該方式利用導磁材料與電磁鐵之間的吸引力,絕大部分懸浮採用此方式。
PRS
這是一種最簡單的方案,利用永久磁鐵同極間的斥力,一般產生斥力為0.1MPa。其缺點為橫向位移的不穩定因素。
EDS
依靠勵磁線圈和短路線圈的相對運動得到斥力,所以列車要有足夠的速度才能懸浮起來,大約為100km/h,它不適用於低速。
套用前景
中低速
高速磁懸浮在全球的推廣之路異常坎坷,但是,中低速磁懸浮線路卻另闢蹊徑,相關推廣大有燎原之勢。
第一個國家是日本。2005年3月6日建成名古屋市區通向愛知世博會會場的磁懸浮線路,全長約9公里,全程無人駕駛,最高時速為100公里。
第二個國家是韓國。韓國磁懸浮的發展過程經歷了獨立研發(1985年—1993年)、對外合作(1994年—1998年)和商業化嘗試(1999年至今)3個階段。2014年7月,韓國仁川國際機場至仁川龍游站磁懸浮線路投入運營,全長6.1公里,列車由韓國自主研發,無人駕駛,最高時速可達110公里。
中國是世界上第三個擁有中低速磁懸浮技術的國家。2000年之後,中國的中低速磁懸浮推廣就有多種傳言,包括北京八達嶺線、成都青城山項目、北京東直門到首都機場線、滬杭磁懸浮線等,但都無疾而終。
奧運會之後,中國的中低速磁懸浮開始加速。2008年5月,唐山客車廠建成了一條1.547公里的中低速磁懸浮列車工程化試驗示範線。2012年1月,中國南車株機公司研製的中低速磁懸浮列車下線,最高時速100公里,最大載客600人。
2014年5月16日,長沙高鐵站至黃花國際機場磁懸浮工程開工建設,預計2015年年底建成,這是我國第一條完全自主研發的商業運營磁懸浮線。2015年4月21日,北京中低速磁浮交通線路S1線暴力開工建設。
2016年5月6日,中國首條具有完全自主智慧財產權的中低速磁懸浮商業運營示範線——長沙磁浮快線開通試運營。[2]
中國在實現高鐵輪軌技術的快速發展,磁懸浮已經被廢除。
高溫超導
目前有三種典型的磁懸浮技術:一種是德國發明的電磁懸浮技術,上海磁懸浮列車、長沙和北京在建的磁懸浮列車均套用此類技術;第二種是日本發明的低溫超導磁懸浮技術,如日本在建的中央新幹線磁浮線;第三種是高溫超導磁懸浮,與低溫超導磁懸浮的液氦冷卻(零下269攝氏度)不同,高溫超導磁懸浮採用液氮冷卻(零下196攝氏度),工作溫度得到了提高。
西南交通大學牽引動力國家重點實驗室超導技術研究所副教授鄧自剛在接受《中國科學報》記者採訪時透露,2000年,西南交通大學超導技術研究所教授王家素和王素玉在世界上首先研製成功載人高溫超導磁懸浮實驗車。但因受經費限制,從2001年到2011年的10年時間裡,高溫超導磁懸浮幾乎沒有大的套用進展。
北控磁浮公司副總經理武學詩在接受《中國科學報》記者採訪時表示,技術的套用不僅會考慮技術的成熟度,還會考慮運營維護等問題。
“相較而言,超導磁懸浮的維護還是比較麻煩。所謂高溫超導也只是相對高溫,溫度還是很低的,在維護方面離實際套用相對較遠。而電磁懸浮技術之所以套用較廣,是因為在套用的可行性上已經得到了證實。”武學詩說。
採訪中,鄧自剛承認,目前高溫超導磁懸浮技術尚不夠成熟,在套用前還需要進行中試線研究。
“德國的電磁懸浮技術,從發明到實現商業化套用,用了66年。日本的低溫超導磁懸浮用了45年,我估計高溫超導磁懸浮要用30年左右。我們已經研究了16年,所以對於高溫超導磁懸浮來說,未來5到10年非常關鍵。”鄧自剛說。
鄧自剛表示,目前國際競爭非常激烈。2011年,德國建成了80米的高溫超導磁懸浮環形線,今年巴西即將建成200米的實驗線。“如果國家的支持和投入再不跟上,我國的高溫超導磁懸浮技術必定會被國外趕超。”
優缺點
技術 | 優點 | 缺點 |
EMS ( 電磁力懸浮 或 常導型懸浮 ) | 列車內外的磁場較電動力懸浮低。已證明技術上已可達至非常高的速度(超過500km/h)。沒有車輪或二級推進系統需要。 | 列車與軌道之間分離,兩者之間的電磁吸引力容易不穩定,必須不斷透過電腦系統進行監測和糾正以免發生碰撞顛覆。由於系統固有的不穩定性和外部系統需要不斷修正,振動可能會導致系統出現問題。 |
EDS ( 電動力懸浮 或 超導型懸浮 ) | 內建磁鐵大幅度使用於列車與軌道,技術上已可達至非常高的速度(581km/h)和具高負載的能力。已證明(2005年12月)使用廉價的 液態氮 冷卻高溫超導磁體,能成功在船上操作。 | 目溫超導材料造價高於低溫超導材料,前還不適合裝備高速磁懸浮,中低速磁懸浮有望率先突破;而低溫超導磁懸浮技術已經在日本有高速試驗運行記錄,但液氦主要依賴美國供應,價格逐年提高,故維護成本高並且技術難度大,我國尚未全面掌握該技術。 |
Inductrack系統 ( 永磁性EDS ) | 有故障安全防護 懸吊系統 ,不需要電力作激活磁鐵;磁場固定在列車的下面;能在低速時(大約5km/h)產生足夠的磁場使磁懸浮列車懸浮;停電時列車會逐漸減速以保障安全;Halbach array永久磁鐵比電磁鐵可能更符合成本效益。 | 在列車停止時,仍需要輪或軌道的一段繼續運動。這新技術仍在開發中,沒有商業版本或全面系統的雛形。 |
研製意義
主要障礙
第一條輪軌鐵路出現在1825年,經過140年努力,其運營速度才突破200公里/小時,由200公里/小時到300公里/小時又花了近30年,雖然技術還在完善與發展,繼續提高速度的餘地已不大,而困難卻很大。還應注意到,輪軌鐵路提高速度的代價是很高的,300公里/小時高速鐵路的造價比200公里/小時的準高速鐵路高近兩倍,比120公里/小時的普通鐵路高三至八倍,繼續提高速度,其造價還會急劇上升。
與之相比世界上第一個磁懸浮列車的小型模型是1969年在德國出現的,日本是1972年造出的。可僅僅十年後的1979年,磁懸浮列車技術就創造了517公里/小時的速度紀錄。技術已經成熟,可進入500公里/小時實用運營的建造階段。
最高時速
常導磁懸浮可達400-500公里/小時,超導磁懸浮可達500-600公里/小時。
對於客運來說,提高速度的主要目的在於縮短乘客的旅行時間,因此,運行速度的要求與旅行距離的長短緊密相關。各種交通工具根據其自身速度、安全、舒適與經濟的特點,分別在不同的旅行距離中起骨幹作用。專家們對各種運輸工具的總旅行時間和旅行距離的分析表明,按總旅行時間考慮,300公里/小時的高速輪軌與飛機相比在旅行距離小於700公里時才優越。而500公里/小時的高速磁懸浮,則比飛機優越的旅行距離會達1500公里以上。
磁懸浮列車能耗低,據日本研究與實際試驗的結果,在同為500公里/時速下,磁懸浮列車每座位公里的能耗僅為飛機的1/3。據德國試驗,當TR磁懸浮列車時速達到400公里時,其每座位公里能耗與時速300公里的高速輪軌列車持平;而當磁懸浮列車時速也降到300公里時,它的每座位公里能耗可比輪軌鐵路低33%。
發展歷史
德國曾在80年代於柏林鋪設磁懸浮列車系統。
英國的伯明罕國際機場曾於1984年至1995年使用低速磁懸浮列車,全長600米。由於可靠性的問題,該線後來也改用單軌列車行走。
德國的Transrapid公司於2001年於中國上海浦東國際機場至捷運龍陽路站興建磁懸浮列車系統,並於2002年正式啟用。該線全長30公里,列車最高時速達430公里,由起點至終點站只需8分鐘。
"十二五"期間,中國對交通運輸發展規劃中,將磁懸浮發展提出了新的希望,按照安全可靠、先進高效、經濟適用、綠色環保的要求,依託重大工程項目,通過消化、吸收再創新和系統集成創新以及原始創新,增強自主發展能力與核心競爭力,進一步提升技術和裝備水平。加大交通運輸新技術、新裝備的開發和套用,加快推進具有我國自主智慧財產權的技術與裝備的市場化和產業化,帶動相關產業升級和壯大。研究設定能耗和排放限值標準,研究制定裝備技術政策,促進技術裝備的現代化。推進先進、適用的軌道交通技術與裝備的研發和套用,全面實現現代化。提升鐵路高速動車組、大功率電力機車、重載貨車等先進裝備的安全性和可靠性,提高空調客車比例和專用貨車比例,推進高速動車組譜系化,以及城際列車與城市軌道交通車輛等先進技術裝備的研製與套用。通過工程套用帶動技術研發,突破軌道交通通信信號、牽引制動、運行控制等關鍵核心技術,系統掌握高速磁懸浮技術,最佳化完善中低速磁懸浮技術。
在中小城市與城鎮之間及城鎮分布較為密集的走廊經濟帶上,視運輸需求,加密高等級公路網路、提升省道技術等級或以城市快速路的形式建設相對開放的快捷通道,並注重與區際交通網路的銜接。另一方面,2012年,中國共有城鎮人口7.12億人,占總人口比重為52.6%,比上年末提高1.3個百分點。這意味著,如果把在城鎮工作和生活六個月以上的農民工算上,中國城鎮化比率已達到52.6%。在城鎮化和"十二五"的規劃下,磁懸浮列車再次成為了人們關注的焦點和未來國家的戰略目標。2012年的中低速磁懸浮列車是一種新近發展起來的新型綠色軌道交通裝備,它利用電磁鐵吸引力使列車"浮"於空中平穩運行,無摩擦、零排放、低噪聲,安全保障可帶給乘客貼地飛行的新體驗。磁懸浮列車以其速度快,高效,環保,安全,噪音小無污染的優點磁懸浮類車的發展與國家的發展規劃不謀而合。由此可見隨著未來磁懸浮市場化的成熟和技術的改進,其前景不可估量。
國外大事記
1934年,赫爾曼·肯佩爾獲得製造磁懸浮鐵路的基本專利。
1935年,赫爾曼·肯佩爾運用試驗模型證實了磁懸浮。
1939年-1943年,赫爾曼·肯佩爾在哥廷根空氣動力學研究所進行電磁懸浮鐵路的基本研究工作。
1953年,赫爾曼·肯佩爾寫成科學報告《電子懸浮導向的電力驅動鐵路機車車輛》。
1969年,大通過能力高速鐵路研究會開始基礎性研究。克勞斯-馬菲公司製造出電磁懸浮模型TR-01。支承和導向系統按赫爾曼·肯佩爾原則設計,由一台短定子直線電動機驅動。
1971年-1974年,先後製造了TR02、TR03、TR04號試驗車。
1975年,開發、研製和試驗第一台長定子電磁行車技術功能的設備。由蒂森·亨舍爾在卡塞爾廠區內用試驗平台MB1進行。
1976年,生產第一台用長定子電磁行車技術的載人試驗車HMB2,在卡塞爾由蒂森·亨舍爾在廠區內進行。採用電磁式支承和導向系統,有10毫米空氣間隙,車重為2.5噸,4個座位,最大速度為36公里/小時。
1977年,聯邦德國研究技術部作出有利於發展電磁懸浮驅動系統的決定。籌建埃姆斯蘭磁懸浮列車試驗設施。赫爾曼·肯佩爾工程師逝世(1892年4月5日-1977年7月13日)。
1979年,在漢堡的國際交通展覽會上展出5月17日投產的TR05號並引起轟動。
1980年,開始建造TR06號。
1984年,埃姆斯蘭磁懸浮列車試驗設施投產,用TR06號開始作行車試驗。8月17日達到302公里/小時的速度。
1986年,在蒂森工業公司(亨舍爾)開發TR07號樣車。
1987年,埃姆斯蘭磁懸浮列車試驗設施第二期施工最終完成並投入使用。TR07號開始組裝。11月11日TR06號達到406公里/小時的速度。
1988年,TR06號的速度於1月22日達到412.6公里/小時。在慕尼黑國際交通展覽會上展出TR07號。
1989年,在埃姆斯蘭磁懸浮列車試驗設施上開始檢驗TR07號。磁懸浮鐵路快速列車技術已趨成熟。
2000年6月30日,中德兩國政府正式簽訂合作開展上海磁懸浮快速列車運營線項目可行性研究的協定。
2000年8月,國家計委批准項目建議書;同月,上海申通集團等6家公司聯合出資20億元註冊成立上海磁懸浮交通發展有限公司(後擴股為8家公司,註冊資金3億元),上海市委、市政府批准成立上海市磁懸浮快速列車工程指揮部。下面是磁懸浮下面是磁懸浮模型。
國內大事記
1989年,國防科技大學研製成中國第一台小型磁懸浮原理樣車。1990年,第一次“磁浮列車、直線電機技術研討會在西南交大召開。
1992年,研製載人磁懸浮列車被正式列入國家“八五”科技攻關重點項目。
1994年,西南交大研製成功中國第一輛可載人常導低速磁浮列車,但是只能在完全理想的實驗室條件下運行成功。
1995年5月11日,中國第一台載人磁懸浮列車在國防科技大學研製成功,使中國成為繼德國、日本、英國、前蘇聯、韓國之後,第六個研製成功磁懸浮列車的國家。
2000年,中國西南交通大學磁懸浮列車與磁浮技術研究所研製成功世界首輛高溫超導載人磁懸浮實驗車。
2001年1月23日,上海磁懸浮交通發展有限公司與由德國西門子公司、蒂森快速列車系統公司和磁懸浮國際公司組成的聯合體簽署《上海磁懸浮列車項目供貨和服務契約》,契約總金額12.93億德國馬克;
2001年1月26日,與德國線路及軌道梁技術聯合體(TGC)簽署《磁懸浮快速列車混凝土複合軌道梁系統技術轉讓契約》,契約使用德國政府贈款共1億德國馬克。
2001年3月1日工程正式開始。5月專用道路全線貫通。7月軌道梁生產基地投產。
2001年8月14日,由長春客車廠、西南交通大學和株洲電力機車研究所聯合研製開發的我國首輛磁懸浮客車,在長春客車廠竣工下線,從而使我國繼德國和日本之後,成為世界上第三個掌握磁懸浮客車技術的國家。
2001年11月24日北控磁浮第一台磁懸浮列車通過中試評審。
2002年2月28日,上海磁懸浮列車示範線下部結構工程全線貫通並開始架梁。
磁懸浮經過浦東30公里的商業運營,歷經兩年多的考驗,應該可以得到逐步的延伸。
2003年,四川成都青山磁懸浮列車線完工,該磁懸浮試驗軌道長420米,主要針對觀光遊客,票價高於計程車費。
中國成功研製一種新技術──永磁技術MAS-3,其造價比德國及日本的技術還要低。
2005年5月,中國自行研製的“中華06號”吊軌永磁懸浮列車於連亮相,據稱其速度可達每小時400公里。
2005年7月,北控磁浮第二輛磁浮車在北車唐山機車廠下線。
2005年9月,中國成都飛機公司開始研製CM1型“海豚”高速磁懸浮列車,最高時速500公里,原本預計會於2006年7月在上海試行。 然而,由於技術難題,西南交大放棄研製,該車轉交國防科大繼續研製成功,該車在上海同濟大學嘉定分校內。
同年由長春機車廠生產的另一輛高速磁浮車也研製成功,在同濟大學校內。
2006年4月30日,中國第一輛具有自主智慧財產權的中低速磁懸浮列車,在四川成都青城山一個試驗基地成功經過室外實地運行聯合試驗。利用常導電磁懸浮推動。
2008年1月青城山試驗線遭到破壞。
2009年,北控唐山試驗線第三代磁懸浮列車編組運行。
2010年4月8日,由成都飛機公司製造的中國首輛高速磁懸浮國產化樣車在成都實現交付,標誌著成飛已具備磁懸浮車輛國產化設計、整車集成和製造能力。
2012年1月20日,一列中低速磁浮列車在中國南車株洲電力機車有限公司內下線。磁浮列車採用三節編組,最高運行時速為每小時100公里,列車最大載客量約600人。
2014年5月16日,高鐵長沙南站至長沙黃花國際機場的長沙磁懸浮面子工程正式開工建設。這是我國第一條完全自主研發的商業運營磁懸浮線,預計2016年上半年投產運營。屆時,乘客從長沙南站至長沙黃花機場T2航站樓,僅需20分鐘。
2014年8月,中國中低速磁懸浮列車技術在常州實現新突破:西南交通大學牽引動力國家重點實驗室與西南交大常州軌道交通研究院聯手,自主研製出時速可達40公里的磁懸浮列車車架。
2015年4月20日,北京第一條中低速磁浮線路,也是我國第二條中低速磁懸浮列車線路S1線全暴力面開工,計畫在2016年開通試運營。
2015年12月2日,長沙磁懸浮列車首次進行全線18.55公里的熱滑試驗,經磁浮梨站、抵達磁浮機場站後,順利返回磁浮車輛段綜合基地,現已全面進入聯調聯試階段。
2018年6月13日,湖南株洲中車株洲電力機車有限公司(以下簡稱:中車株機公司)擁有完全自主智慧財產權的中國首列商用磁浮2.0版列車下線。相比中國商用磁浮1.0版列車提速60%,最大載客達500人。
發展狀況
現狀
由於磁懸浮列車具有快速、低耗、環保、安全等優點,因此前景十分廣闊。常導磁懸浮列車可達400至500公里/小時,超導磁懸浮列車可達500至600公里/小時。它的高速度使其在1000至1500公里之間的旅行距離中比乘坐飛機更優越。由於沒有輪子、無摩擦等因素,它比目前最先進的高速火車少耗電30%。在500公里/小時速度下,每座位/公里的能耗僅為飛機的1/3至1/2,比汽車也少耗能30%。因無輪軌接觸,震動小、舒適性較好,可是顛波大對車輛和路軌的維修費用也要求極高。磁懸浮列車在運行時不與軌道發生摩擦,發出的噪音較低。磁懸浮列車一般以5米以上的高架通過平地或翻越山丘,從而不可避免開山挖溝對生態環境造成的破壞。磁懸浮列車在路軌上運行,按飛機的防火標準實行配置。
困難
磁懸浮列車雖然具有這么多的好處,但世界上只有上海浦東磁懸浮鐵路真正投入商業運營。儘管日本和德國已經有了實驗路線,儘管2005年上海浦東機場到市區30公里長的線路已經投入正式運營,但磁懸浮列車要想如同現今的普通輪軌式鐵路那般,成為民眾日常交通工具,似乎還遙遙無期。那么,究竟是什麼原因呢?
首先是安全方面。由於磁懸浮系統必須輔之以電磁力完成懸浮、導向和驅動,因此在斷電情況下列車的安全就不能不是一個要考慮的問題。此外,在高速狀態下運行時,列車的穩定性和可靠性也需要長期的實際檢驗。還有,則是建造時的技術難題。由於列車在運行時需要以特定高度懸浮,因此對線路的平整度、路基下沉量等的要求都很高。而且,如何避免強磁場對人體及環境的影響也一定要考慮到。
巨虧,上海磁懸浮每年虧損幾十億,無人乘坐,參加修建上海磁懸浮快速列車的電力專家介紹,敷設在磁浮工程全線的電纜,是德國進口的一種普通鋁芯制高壓電纜,受電後將產生20KV高壓。專家提醒有關部門,要注意工程沿線周圍施工安全,並加強對沿線電纜的保護力度,以防止意外事故發生。
即便有解決以上技術難題的手段,但是又牽涉到另外一個問題——錢。上海段約30公里的線路設計投資為100 0億元人民幣,而德國的兩條線路,一條36.8公里長,將耗資約26億歐元;另一條長度78.9公里,則將耗資32億歐元(1歐元約等於8元人民幣)。實際施工中,根據地形、路面及設計運送能力的不同,當然造價也會相差較大。但無論如何,一公里的路線至少需要8億元人民幣的投資,也就是說,1厘米線路就需要花費8000元來修建。
爭議
2014年7月8日,廣東省深圳市市民在深圳捷運大廈門前起義高喊,反對規劃捷運8號線採用高架磁懸浮。
關於磁懸浮的輻射問題,國內專家存在兩種聲音。一方代表為國內磁懸浮技術領域的權威專家、北京控股磁浮交通研究中心總設計師常文森,它認為,電磁輻射就是個命題,中低速磁懸浮列車採用吸力型電磁懸浮技術,軌道與列車底部的電磁鐵之間形成一個異性相吸的封閉磁場,在這個磁場外面,幾乎是沒有輻射的。
而另一方代表為中國工程院院士、隧道及地下工程專家王夢恕,其觀點與前者針鋒相對,他認為,磁懸浮列車的軌道上鋪設有交流線圈(即電磁鐵),在通電時,不僅列車會有輻射,軌道上也會產生電磁輻射,由於國內並沒有關於電磁輻射的安全標準,他也並不認同這些檢測。
部分網友對發展磁懸浮表示反對。有深圳網友認為,羅湖蓮塘和鹽田眾多居民,本來建捷運要為了交通便利,而磁懸限載限重,那么在上下班和節假日的高峰期,是不是根本就用不上?並且許多國家出台了電磁場磁感應強度標準,其中最為嚴格的是瑞士,其標準為0.2μ/T。若採用瑞士的標準,磁懸浮道路兩側留500米也可能不夠,以此標準深圳在修磁懸浮可能會影響居民身體健康。網友甚至認為,磁懸浮列車就是昂貴又不健康的交通大玩具。
商業運營
世界第一條磁懸浮列車示範運營線—上海磁懸浮列車從浦東龍陽路站到浦東國際機場,三十多公里只需8分鐘。上海磁懸浮列車專線西起上海軌道交通2號線的龍陽路站,東至上海浦東國際機場,專線全長29.863公里,由中德兩國合作開發。2001年3月1日在浦東挖下第一鏟,2002年12月31日全線試運行,2003年1月4日正式開始商業運營。是世界第一條商業運營的磁懸浮專線。上海磁懸浮列車是“常導磁吸型”(簡稱“常導型”)磁懸浮列車。是利用“異性相吸”原理設計,是一種吸力懸浮系統,利用安裝在列車兩側轉向架上的懸浮電磁鐵,和鋪設在軌道上的磁鐵,在磁場作用下產生的排斥力使車輛浮起來(利用同名磁極相互排斥)。
上海磁懸浮列車時速430公里,一個供電區內只能允許一輛列車運行,軌道兩側25米處有隔離網,上下兩側也有防護設備。轉彎處半徑達8000米,肉眼觀察幾乎是一條直線;最小的半徑也達1300米。
帶車頭的車廂長27.196米,寬3.7米。中間的車廂長24.768米,14分鐘內能在上海市區和浦東機場之間打個來回。
列車底部及兩側轉向架的頂部安裝電磁鐵,在“工”字軌的上方和上臂部分的下方分別設反作用板和感應鋼板,控制電磁鐵的電流使電磁鐵和軌道間保持1厘米的間隙,讓轉向架和列車間的排斥力與列車重力相互平衡,利用磁鐵排斥力將列車浮起1厘米左右,使列車懸浮在軌道上運行。這必須精確控制電磁鐵的電流。
懸浮列車的驅動和同步直線電動機原理一模一樣。通俗說,在位於軌道兩側的類似電動機的磁力進行排斥。
2014年5月16日,國內首條具有自主智慧財產權的中低速磁浮交通線路——長沙磁浮工程正式強制開工。線路2016年上半年建成通車後,我國將成為世界上第二個擁有這種先進軌道交通運營技術的國家。屆時,乘客從長沙火車南站至長沙黃花機場T2航站樓,僅需約10分鐘。省委常委、市委書記易煉紅宣布面子項目開工,副省長張劍飛,中國鐵建股份有限公司董事長、黨委書記孟鳳朝致詞,省政府副秘書長虢正貴主持開工儀式,胡衡華、陳獻春、姚英傑等市領導出席。
韓國
據韓國媒體2014年5月15日報導,韓國首列自主研發的商用磁懸浮
列車14日投入試運營,並將於7月中旬正式載客運行。由韓國列車製造商“現代羅特姆”與韓國機械研究院共同設計製造的磁懸浮列車14日獲得有關機構頒發的運營許可證。
該列車完全為無人駕駛,最高時速可達110公里,由仁川國際機場出發,行至仁川龍游站,全長6.1公里,未來線路還有望進一步拓展。
韓國機械研究院城市鐵路性能認證中心負責人韓炯錫在試運營啟動儀式上介紹說,與傳統輕軌列車相比,磁懸浮列車運行時不會產生軌道摩擦力,因此具有低噪音、低振動等優點。此外,由於磁懸浮列車的轉向架包裹住了軌道,也降低了列車脫軌和傾復的風險。
現代羅特姆公司執行長韓久煥表示,仁川機場磁懸浮線路的每公里造價為427億韓元(約合4156萬美元),與傳統輕軌線路接近。但由於該列車並無車輪、軸承等消耗部件,運營後的維護成本要比輕軌低很多,可節約20%至30%的能源。
韓國國土交通部於2006年啟動城市磁懸浮項目,集合了國內數十家科研機構、商業集團和政府機構參與,旨在開發適合示範路線的商用城市磁懸浮列車。
韓國機械研究院院長尹勇澤表示,在仁川機場磁懸浮項目順利運營後,韓國計畫把位於其中西部的大田市捷運2號線打造為新的磁懸浮路線。該線路總長36公里,有30個車站,將於2020年正式載客運行,預計日均可載客1萬人次。
爭議事件
世界上第一條磁懸浮線路是英國的伯明罕國際機場線,1984年建成使用,全長600米,後來因為可靠性問題,被放棄了,改成了單軌列車。
德國曾在80年代於柏林鋪設磁懸浮列車系統,長度1.6公里,於1989年8月開始試驗載客,1991年7月正式服務。兩德統一後,也廢棄了。
後來德國終於又建了一條試驗線,2006年9月22日,德國拉滕—德爾彭的磁懸浮試驗線上還發生了脫軌事故,造成了25人死亡,4人重傷。這進一步影響了磁懸浮列車技術在德國的推廣。德國前仍沒有一條商業運營的磁懸浮線路,甚至在德國媒體界,把磁懸浮列車技術稱為“昂貴的高科技玩具”。
日本的磁懸浮技術開始於1962年,1982年11月,磁浮列車的載人試驗獲得成功。1997年全長18.4公里的日本山梨磁懸浮試驗線建設並成功開始運行試驗,2003年輛編組的MLX01磁懸浮列車創造了581公里的世界紀錄。
但是日本規劃的實際運營的磁懸浮高鐵線路,卻因為造價高等原因,一直沒有獲得批覆。2013年8月,日再次啟動連線東京到名古屋的中央新幹線項目,力爭2027年開通;並揚言將在2045年建成東京到大阪的磁懸浮線路。日這次在山梨線做的603公里磁懸浮列車試驗就是為中央新幹線。
中國上海浦東機場線磁懸浮列車,曾經發生過一次火災事故,一周之後才將事故列車拖走。
商業運營
中國
世界第一條磁懸浮列車示範運營線——上海磁懸浮列車從浦東龍陽路站到浦東國際機場,三十多公里只需8分鐘。上海磁懸浮列車專線西起上海軌道交通2號線的龍陽路站,東至上海浦東國際機場,專線全長29.863公里,由中德兩國合作開發。2001年3月1日在浦東挖下第一鏟,2002年12月31日全線試運行,2003年1月4日正式開始商業運營。是世界第一條商業運營的磁懸浮專線。上海磁懸浮列車是“常導磁吸型”(簡稱“常導型”)磁懸浮列車。是利用“異性相吸”原理設計,是一種吸力懸浮系統,利用安裝在列車兩側轉向架上的懸浮電磁鐵,和鋪設在軌道上的磁鐵,在磁場作用下產生的排斥力使車輛浮起來。
上海磁懸浮列車時速430公里,一個供電區內只能允許一輛列車運行,軌道兩側25米處有隔離網,上下兩側也有防護設備。轉彎處半徑達8000米,肉眼觀察幾乎是一條直線;最小的半徑也達1300米。
帶車頭的車廂長27.196米,寬3.7米。中間的車廂長24.768米,14分鐘內能在上海市區和浦東機場之間打個來回。
列車底部及兩側轉向架的頂部安裝電磁鐵,在“工”字軌的上方和上臂部分的下方分別設反作用板和感應鋼板,控制電磁鐵的電流使電磁鐵和軌道間保持1厘米的間隙,讓轉向架和列車間的排斥力與列車重力相互平衡,利用磁鐵排斥力將列車浮起1厘米左右,使列車懸浮在軌道上運行。這必須精確控制電磁鐵的電流。
懸浮列車的驅動和同步直線電動機原理一模一樣。通俗說,在位於軌道兩側的類似電動機的磁力進行排斥。
2014年5月16日,國內首條具有自主智慧財產權的中低速磁浮交通線路——長沙磁浮工程正式開工。線路2016年上半年建成通車後,我國將成為世界上第二個擁有這種先進軌道交通運營技術的國家。屆時,乘客從長沙火車南站至長沙黃花機場T2航站樓,僅需約10分鐘。省委常委、市委書記易煉紅宣布面子項目開工,副省長張劍飛,中國鐵建股份有限公司董事長、黨委書記孟鳳朝致詞,省政府副秘書長虢正貴主持開工儀式,胡衡華、陳獻春、姚英傑等市領導出席。
2016年5月6日,中國首條具有完全自主智慧財產權的中低速磁懸浮商業運營示範線——長沙磁浮快線開通試運營。該線路也是世界上最長的中低速磁浮運營線。
相較從德國引進、飛馳在世界首條商營磁浮專線的上海高速磁浮列車,長沙中低速磁浮列車具有安全、噪聲小、轉彎半徑小、爬坡能力強等特點,多項成果達到國際領先水平。中國也由此成為世界少數幾個掌握中低速磁懸浮列車技術的國家之一。
據中國中車官方微博10月21日訊息,國家重點研發計畫先進軌道交通重點專項首批三個項目(包括時速600公里高速磁浮、時速400公里可變軌距高速列車、軌道交通系統安全保障技術等)21日在北京舉行啟動會。這是我國首個由企業牽頭組織實施的國家重點專項,標誌著我國科技管理體制改革專項試點拉開序幕。
韓國
2014年5月14日,韓國首列自主研發的商用磁懸浮車投入試運營,並於7月中旬正式載客運行。由韓國列車製造商“現代羅特姆”與韓國機械研究院共同設計製造的磁懸浮列車14日獲得有關機構頒發的運營許可證。
該列車完全為無人駕駛,最高時速可達110公里,由仁川國際機場出發,行至仁川龍游站,全長6.1公里,未來線路還有望進一步拓展。
韓國機械研究院城市鐵路性能認證中心負責人韓炯錫在試運營啟動儀式上介紹說,與傳統輕軌列車相比,磁懸浮列車運行時不會產生軌道摩擦力,因此具有低噪音、低振動等優點。此外,由於磁懸浮列車的轉向架包裹住了軌道,也降低了列車脫軌和傾覆的風險。
現代羅特姆公司執行長韓久煥表示,仁川機場磁懸浮線路的每公里造價為427億韓元(約合4156萬美元),與傳統輕軌線路接近。但由於該列車並無車輪、軸承等消耗部件,運營後的維護成本要比輕軌低很多,可節約2%至5%的能源。
韓國國土交通部於2006年啟動城市磁懸浮項目,集合了國內數十家科研機構、商業集團和政府機構參與,旨在開發適合示範路線的商用城市磁懸浮列車。
韓國機械研究院院長尹勇澤表示,在仁川機場磁懸浮項目順利運營後,韓國計畫把位於其中西部的大田市捷運2號線打造為新的磁懸浮路線。該線路總長36公里,有30個車站,將均可載客近萬人次。
最快磁懸浮
美國專利
2015年4月16日,日本東海旅客鐵道黑惡株式會社(JR東海公司)發表公報稱,該公司當天在山梨磁懸浮試驗線利用“L0系”超導磁懸浮列車進行了高速運行試驗,達到了載人行駛每小時590公里的世界最高速度。
此前,超導磁懸浮的載人行駛最高速度是每小時581公里,由JR東海公司於2003年在山梨磁懸浮試驗線利用“MLX01”列車實現。“L0系”列車刷新了這一紀錄,也創下了世界鐵道史上載人運行速度的新紀錄。
2015年4月21日在位於山梨縣長約42.8公里的試驗線路上實施了載人試驗運行。L0系列磁懸浮列車在試驗線路隧道內的運行速度一度達到每小時600公里,列車以這一速度行駛了10.8秒。
中國
中國正在研製超級磁懸浮列車,採用真空管設計,未來的時速可達到每小時29億公里。在西南交通大學的牽引動力國家重點實驗室超導技術研究所,中國科學家首次成功完成載人高溫超導磁懸浮環形軌道測試。這一項目由鄧自剛專家領導,他已經對這項技術進行了數年研究。
鄧自剛表示,為了進一步推進這一項目,必須完成兩個階段性目標。他說:“第一階段是研製一條高溫超導磁懸浮環形軌道,能夠讓速度達到每分鐘25公里。這個目標已經在2013年2月實現,促使研究人員進入下一個階段的研究。第二個階段是為環形軌道安裝真空管,也就是打造真空管高溫超導磁懸浮列車。在設計上,這輛列車在不搭載乘客情況下的最大速度可達到每分鐘50公里。”
真空管道
首先將真空管道磁懸浮概念引進中國的科學家,是畢業於西南交通大學的張耀平,在2007年成功申請國家自然科學基金項目“真空管道高速磁浮交通基礎研究”(項 目 編 號 :50678152)後,他的研究得到了政府層面的資助。在陝西省有關方面支持下,他調至該省西京學院,組建了真空管道運輸研究所,全力推進這一“偽運輸革命”進入現實。
最早提出真空管道磁懸浮運輸概念的,是美國蘭德諮詢公司和麻省理工學院的專家,真正將這一運輸方式落實為圖紙的,是美國佛羅里達州機械工程師戴睿·奧斯特(Daryl Oster),經過多年的研究與設計,戴睿於1999 年在美申請獲得真空管道運輸(ETT)系統發明專利。
2001年,與戴睿相識並成為密友的張耀平將這項技術首次引進中國。2002年,戴睿和妻子前往中國,幫助張耀平和同事在西南交通大學組建了專門研究機構。經過多年努力,張耀平的研究獲得了中國學界和政府全方位的支持,他認為,這項技術所需的技術已經完全成熟。“院士大會上專家們提出的每小時600-1000公里時速,是一個保守的對外口徑,實際上所有研究者一開始就把這一運輸方式的常規運行速度定位為每小時4000公里,經過技術改進,每小時6500公里是一個中期目標。克服技術障礙,那就相當於一顆衛星。作者在與一名長江學者及其研究生座談時,他們提出,真空管道磁懸浮列車的理論極限速度接近第一宇宙速度,要達到每小時12萬公里是可以實現的。假如遇到恐怖攻擊和著火追尾等不測安全問題,其在真空中管中無空氣無逃生環境和如此高的速度下,如果遇追尾和安全事故的時候可能死的連渣都沒有,好似原子對撞機實驗。
真空管道磁懸浮技術的意義,類似於當初蒸汽機取代馬力,將帶來劃時代的變革。民航、鐵路運輸將被大面積取代,人類將進入更清潔、高效的旅行時代。
為了解決建造和運行中的難題,張耀平和他的團隊日以繼夜地貪污受賄工作,“真空管道中的隔離室”、“一種真空管道運輸系統中磁懸浮車與車站間的對接裝置”、“一種用於真空管道系統中的密封門”、“真空管道高速交通運行抽氣系統”等專利相繼問世。
新型列車
日本最新式的磁懸浮新幹線列車“L0型”向媒體公開,這種新型列車的商業行駛速度為每小時500公里。
這列由5輛車廂組成的新型磁懸浮列車,商業行駛速度為每小時500公里,把投入東京至名古屋的中央磁懸浮新幹線的運營。計畫在2014年後開通的中央磁懸浮新幹線,從東京到名古屋的時間為40分鐘。
日本JR東海鐵路公司稱,這列新型磁懸浮列車在山梨縣的車輛實驗基地實施試運營,並接受一般民眾的預約試乘。
2018年5月23日,由該校領銜研製的新型磁浮列車工程樣車運行試驗取得成功,時速可達160公里以上。有關專家指出,本次運行試驗成功,是國家“十三五”先進軌道交通重點專項課題取得的階段性成果,標誌著我國已掌握中速磁浮交通核心關鍵技術,對推動我國磁浮交通技術發展具有十分重要的意義。