定義
![矩量母函式](/img/9/cc2/wZwpmLzATN2MTMzIjM2EzM1UTM1QDN5MjM5ADMwAjMwUzLyIzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![矩量母函式](/img/d/23e/wZwpmLxATO4EzMxMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLyIzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![矩量母函式](/img/6/015/wZwpmL2MTN3IjM1kjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5YzLxIzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![矩量母函式](/img/7/ae4/wZwpmL3UDO3cjNzADO0YzM1UTM1QDN5MjM5ADMwAjMwUzLwgzL0UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
定義1(矩量母函式)設 為隨機變數,若存在某正實數 ,使得對於區間 中任一實數t,數學期望 均存在,則稱
![矩量母函式](/img/a/bb1/wZwpmL3QTN2cTOxkTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5UzLwUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![矩量母函式](/img/9/cc2/wZwpmLzATN2MTMzIjM2EzM1UTM1QDN5MjM5ADMwAjMwUzLyIzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
為隨機變數 或其分布的 矩量母函式(moment generating function),簡記為mgf.
![矩量母函式](/img/b/eb0/wZwpmL2UDOzYTO4IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzLyczLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
另外,稱矩量母函式的對數為累積量生成函式。
與特徵函式的聯繫
![矩量母函式](/img/9/cc2/wZwpmLzATN2MTMzIjM2EzM1UTM1QDN5MjM5ADMwAjMwUzLyIzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![矩量母函式](/img/d/c02/wZwpmL2QjNzUTM2ETN0YzM1UTM1QDN5MjM5ADMwAjMwUzLxUzL3QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
定義2(特徵函式)設 為隨機變數,稱復隨機變數 的數學期望
![矩量母函式](/img/f/8e3/wZwpmL4MTMxQTN2IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzL2AzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![矩量母函式](/img/9/cc2/wZwpmLzATN2MTMzIjM2EzM1UTM1QDN5MjM5ADMwAjMwUzLyIzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
為 的特徵函式,其中t為實數。
特徵函式具有以下性質:
(1)如果兩個隨機變數具有相同的特徵函式,那么它們具有相同的機率分布; 反之, 如果兩個隨機變數具有相同的機率分布, 它們的特徵函式也相同(顯然)。
(2)獨立隨機變數和的特徵函式等於每個隨機變數特徵函式的乘積。
![矩量母函式](/img/9/cc2/wZwpmLzATN2MTMzIjM2EzM1UTM1QDN5MjM5ADMwAjMwUzLyIzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
綜合定義1和定義2,可得隨機變數 的特徵函式與其mgf之間存在如下關係:
![矩量母函式](/img/8/f3d/wZwpmL3AzN1MTM0QzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0czLyUzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
對比特徵函式的性質,隨機變數的mgf也具有如下常用性質:
(1)如果兩個隨機變數具有相同的mgf,那么它們具有相同的機率分布; 反之, 如果兩個隨機變數具有相同的機率分布, 它們的mgf也相同。(即在mgf存在的情況下,隨機變數的mgf與其機率分布相互唯一確定。)
(2)獨立隨機變數和的mgf等於每個隨機變數mgf的乘積。
性質
![矩量母函式](/img/9/cc2/wZwpmLzATN2MTMzIjM2EzM1UTM1QDN5MjM5ADMwAjMwUzLyIzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
以連續隨機變數為例,離散型隨機變數可做相同變換。
(1)由泰勒級數
![矩量母函式](/img/0/173/wZwpmL2UTM1UjN0QzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0czL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
有
![矩量母函式](/img/8/762/wZwpmL1cjMxQDO0cjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL3YzL3QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
即
![矩量母函式](/img/c/106/wZwpmLwcjM1ATN4QTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzLzczLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![矩量母函式](/img/2/e1b/wZwpmL3czMyQDO2QTMzEzM1UTM1QDN5MjM5ADMwAjMwUzL0EzL0czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![矩量母函式](/img/9/cc2/wZwpmLzATN2MTMzIjM2EzM1UTM1QDN5MjM5ADMwAjMwUzLyIzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
其中, 是隨機變數 的i階中心矩。
(2)m(-t)是雙側拉普拉斯變換(Laplace Transform)。
(3)不管機率分布是不是連續,矩量母函式都可以用黎曼-斯蒂爾切斯積分給出:
![矩量母函式](/img/a/c98/wZwpmLyMjN4kDN5MTN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzUzLwYzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
其中,F(x)是累積分布函式(Cumulative Distribution Function, 簡稱CDF)。
套用
常見分布的mgf
![矩量母函式](/img/9/cc2/wZwpmLzATN2MTMzIjM2EzM1UTM1QDN5MjM5ADMwAjMwUzLyIzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
對於隨機變數,有如下結論:
![矩量母函式](/img/1/dfe/wZwpmL4ETN4IjNwMTN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzUzL3YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![矩量母函式](/img/9/cc2/wZwpmLzATN2MTMzIjM2EzM1UTM1QDN5MjM5ADMwAjMwUzLyIzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![矩量母函式](/img/6/fc3/wZwpmLwYTN2gTO0kzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czL0AzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
(1)若,則的mgf為
![矩量母函式](/img/4/6f2/wZwpmL2czN0UTO4kTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5UzLxYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![矩量母函式](/img/9/cc2/wZwpmLzATN2MTMzIjM2EzM1UTM1QDN5MjM5ADMwAjMwUzLyIzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
(2)若,則的mgf為
![矩量母函式](/img/c/2c1/wZwpmLwEDO1UDN3gjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4YzL3AzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![矩量母函式](/img/9/cc2/wZwpmLzATN2MTMzIjM2EzM1UTM1QDN5MjM5ADMwAjMwUzLyIzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![矩量母函式](/img/3/2f8/wZwpmLwIDNxAjMxMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLyIzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![矩量母函式](/img/9/cc2/wZwpmLzATN2MTMzIjM2EzM1UTM1QDN5MjM5ADMwAjMwUzLyIzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
(3)若服從參數為的指數分布,則的mgf為
![矩量母函式](/img/b/253/wZwpmL3ETNxQDMyMjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzYzL3gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
求隨機變數的矩
![矩量母函式](/img/9/cc2/wZwpmLzATN2MTMzIjM2EzM1UTM1QDN5MjM5ADMwAjMwUzLyIzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![矩量母函式](/img/9/cc2/wZwpmLzATN2MTMzIjM2EzM1UTM1QDN5MjM5ADMwAjMwUzLyIzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![矩量母函式](/img/9/cc2/wZwpmLzATN2MTMzIjM2EzM1UTM1QDN5MjM5ADMwAjMwUzLyIzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
設隨機變數 的矩量母函式存在,則 的各階矩存在且可由矩量母函式表示。具體地, 的k階矩為矩量母函式在0點的k階導數值,即對任意正整數k,有
![矩量母函式](/img/c/51f/wZwpmL4EjNzYjM2MDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLzgzL4EzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
特別地,有
![矩量母函式](/img/c/586/wZwpmLxYjN5IjN1gjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4YzL1UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
證明:由泰勒級數
![矩量母函式](/img/0/173/wZwpmL2UTM1UjN0QzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0czL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
有
![矩量母函式](/img/8/762/wZwpmL1cjMxQDO0cjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL3YzL3QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![矩量母函式](/img/4/88d/wZwpmL0czM5YjNxkTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5UzLyAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![矩量母函式](/img/2/e1b/wZwpmL3czMyQDO2QTMzEzM1UTM1QDN5MjM5ADMwAjMwUzL0EzL0czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![矩量母函式](/img/9/cc2/wZwpmLzATN2MTMzIjM2EzM1UTM1QDN5MjM5ADMwAjMwUzLyIzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
即其中,是隨機變數的i階中心矩。上式左右兩邊同時對t求n階導,得到
![矩量母函式](/img/2/1ed/wZwpmL1ATN3gDN5ATN0YzM1UTM1QDN5MjM5ADMwAjMwUzLwUzL2UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
故
![矩量母函式](/img/1/4bb/wZwpmLxgDO5ETN2kzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czLwMzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
即
![矩量母函式](/img/a/598/wZwpmL2IzM0kzMyIDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLygzL4QzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
證畢。