渦絲
正文
強度取有限值的渦管元(見渦旋),又稱線渦。在工程實際中,渦旋大多分布在一定的體積內。設強度分布函式為Ω(x,y,z,t),則體積元dτ內的渦旋強度為Ωdτ。但有時渦旋也可能集中在很細的一根渦管上,其管徑遠小於問題的特徵尺度。此時可近似地將此渦管看成是幾何上的一條線,故稱為渦絲。 設渦絲的強度為Γ,當渦絲的截面積σ趨於零時,渦量的大小Ω必須趨於無窮大並使渦通量σΩ保持為有限值Γ。考慮面積為σ,長為dl的體積dτ,則下式成立:Ωdτ=Ωσdl=Γdl(1)
式中dl是線段元矢量,大小為dl,方向與渦旋矢量重合。給定體積τ內的渦旋場,則它所誘導的速度場由下式確定:(2)
式中。將式(1)代入便得一段渦絲元所誘導的速度:。 (3)
式(3)稱為畢奧-薩伐爾公式。它指出,曲線渦絲段dl所誘導的速度dv,其方向垂直於dl和r,大小則與距離r的平方成反比,而且同dl和dl與r的夾角的正弦成正比。從式(3)可導出下述重要結果:
①無限長直線渦絲 此時,這裡取z軸與直線渦絲相重合的柱坐標系(r,嗞,z),嗞0是嗞方向的單位矢量。可見,速度在z方向的分量等於零,且平行z軸的直線上各點的速度完全相同。因此直線渦絲誘導的是流體的平面運動。此時只需要考慮一個垂直於z軸的平面即可。渦絲在此平面上表現為一個點渦。因此,直線渦絲產生的速度場也可看成平面上的點渦所感應的速度場。直線渦絲沒有自感,所以渦絲本身靜止不動。
②圓形渦絲 取柱坐標,渦絲所在平面為(r,嗞)平面,z軸通過圓心O。此時v=墷×A,其中Ar=0,Az=0, 式中a是圓形渦絲的半徑;;K(k)和E(k)是以k為模數的第一類和第二類完全橢圓積分。常曲率的圓形渦絲在自身誘導下沿著z軸方向以常速運動。在運動過程中渦絲不斷變形。理論揭示渦絲的運動速度為無限大。實際問題中,渦管總是有限粗的,所以自感引起的渦管運動速度也是有限的。
②一般的曲線渦絲 由於自身誘導作用,變曲率曲線渦絲將在流體中運動,並在運動過程中不斷改變自己的形狀。