定義
經濟學方面:集合、關係(等價、傳遞等)、全序、前序、凸凹、擬凸(凹)。了解度量空間的部分知識。了解擬凹函式、凹函式和微分學知識,部分線性代數知識。這些知識將很好地幫助您了解高級個體經濟學的內容,尤其是效用存在性定理的證明、對一般均衡的理解等等。如果要研究經濟個體最優行為這些知識就顯得尤為必要。
所謂擬凹函式,就是相對坐標橫軸,圖像里沒有下凸現象的曲線。亦即對任意兩點x、y屬於定義域,f(ax+(1-a)y)>=min[f(x), f(y)]。容易證明,若函式是擬凹的,若且唯若其定義域的所有上輪廓集(upper contour set)都是凸的。對於效用函式來說,偏好是凸的,若且唯若效用函式是擬凹的。
至於他的意義,其實就是討論為什麼偏好一定要假定為凸的,偏好的凸性往往被解釋為偏好是邊際替代率是遞減的(注意:是邊際替代率遞減,而非邊際效用遞減!)。從直覺上解釋這種現象,就好比一個人,買蘋果和桔子,他覺得1個蘋果三個桔子比一個桔子三個蘋果好,那么這兩種消費結構直線上的點兩個蘋果兩個桔子,也必定比一個桔子三個蘋果好。這是一個二維的情況。一維則更清楚了,三個蘋果如果比一個蘋果好,那么兩個蘋果一定也比一個蘋果好。隨著維數增加,這個規律也是比較合理的。
另外,最佳化問題中把偏好假設為是凸的,再加上局部非飽和性質,使得對於任意的預算約束下,總有最大效用消費的解。否則,談最佳化是沒有任何意義的。
嚴格擬凹函式
[定義]嚴格擬凹函式:f:D→R是嚴格擬凹函式,若且唯若,對於所有的x1,x2∈D,都有 f(tx1+(1-t)x2)>min{f(x1), f(x2)} ,對於所有的t∈(0,1) 。由定義易知,所有單調一元函式能被認為是此類函式。