區間分析
正文
又稱區間數學,是一門用區間變數代替點變數進行運算的數學分支。它最初是從計算數學的誤差理論研究發展起來的。1966年R.E.穆爾在《區間分析》一書中第一次系統提出區間運算理論。記I(R)為所有有限長區間總集合,即I(R)={【α,b)】│α≤b),α,b)∈R},如果α=b)就是一個實數α=〔α,α〕稱為點區間,設I,J∈I(R)為兩區間,I=【α,b)】,J=【с,d】,可定義區間四則運算為在n維空間中,若向量x=(x1,x2,…,xn)的分量xj(i=1,2,…,n)都是區間,則x稱為n維區間向量,幾何上表示n維長方體。若n×m階矩陣A的元素Aij都是區間,則A=

20世紀70年代以來區間數學有很大發展,在計算數學方面有很多套用,如利用區間疊代法可判斷對非線性方程組及運算元方程解的存在惟一性及區間疊代序列收斂性,這是點疊代法得不到的結果。此外,它在區間插值與逼近、線性方程、非線性規劃、微分方程等方面也有套用。直接用區間量計算的計算機語言──區間語言也已出現。
參考書目
R. E. Moore,Interval Analysis,Prentice-Hall, Englewood Cliffs, New Jersey, 1966.