光纖

光纖

光纖是光導纖維的簡寫,是一種由玻璃或塑膠製成的纖維,可作為光傳導工具。 傳輸原理是“光的全反射”。 前香港中文大學校長高錕和George A. Hockham首先提出光纖可以用於通訊傳輸的構想,高錕因此獲得2009年諾貝爾物理學獎。

基本信息

定義

光纖 光纖

微細的光纖封裝在塑膠護套中,使得它能夠彎曲而不至於斷裂。通常,光纖的一端的發射裝置使用發光二極體(light emitting diode,LED)或一束雷射將光脈衝傳送至光纖,光纖的另一端的接收裝置使用光敏元件檢測脈衝。

在日常生活中,由於光在光導纖維的傳導損耗比電在電線傳導的損耗低得多,光纖被用作長距離的信息傳遞。

通常光纖與光纜兩個名詞會被混淆。多數光纖在使用前必須由幾層保護結構包覆,包覆後的纜線即被稱為光纜。光纖外層的保護層和絕緣層可防止周圍環境對光纖的傷害,如水、火、電擊等。

光纜分為:纜皮、芳綸絲、緩衝層和光纖。光纖和同軸電纜相似,只是沒有網狀禁止層。中心是光傳播的玻璃芯。  

在多模光纖中,芯的直徑是50μm和62.5μm兩種, 大致與人的頭髮的粗細相當。而單模光纖芯的直徑為8μm~10μm,常用的是9/125μm。芯外面包圍著一層折射率比芯低的玻璃封套, 俗稱包層,包層使得光線保持在芯內。再外面的是一層薄的塑膠外套,即塗覆層,用來保護包層。光纖通常被紮成束,外面有外殼保護。 纖芯通常是由石英玻璃製成的橫截面積很小的雙層同心圓柱體,它質地脆,易斷裂,因此需要外加一保護層。

說明:9/125μm指光纖的纖核為9μm,包層為125μm,9/125μm是單模光纖的一個重要的特徵,50/125μm指光纖的纖核為50μm,包層為125μm,50/125μm是多模光纖的一個重要的特徵。

其中金磚國家光纜計畫是直接連通5個金磚國家的海底光纜項目,將於2014年初開工,2015年中啟用。該項目總長3.4萬千米,其中直接連通5個金磚國家的海底光纜長約2.4萬千米。

2013年,全球100G光纖的收入預計將首次超過10億美元。該公司分析了2013年一季度全球光網路市場的財務結果,發現了一些趨勢,包括一個令人失望的趨勢,即市場的總體增長仍然是困難的,只有日本的富士公司利潤逐年增長。

雖然光纖市場在第一季度出現衰退的情況並不少見,但這次下降令人擔憂是因為這已經是連續第五個季度市場有所下降,並且季度收入達到六年來的最低值。

100G光纖的情況較為樂觀,不管環比、同比都表現出強勁增長。2013年一季度,100G光纖的出貨量較2012年四季度增長了41%,收入較2012年四季度增長了24%。以此計算,年收入有望首次超過10億美元。2013年一季度,有20家供應商出售100G光纖,將有更多的廠商加入市場競爭。供應商持謹慎樂觀的態度,短期訂單量看漲,長期訂單量並不樂觀。

發展歷史

發明

1870年的一天,英國物理學家丁達爾到皇家學會的演講廳講光的全反射原理,他做了一個簡單的實驗:在裝滿水的木桶上鑽個孔,然後用燈從桶上邊把水照亮。結果使觀眾們大吃一驚。人們看到,放光的水從水桶的小孔里流了出來,水流彎曲,光線也跟著彎曲,光居然被彎彎曲曲的水俘獲了。

人們曾經發現,光能沿著從酒桶中噴出的細酒流傳輸;人們還發現,光能順著彎曲的玻璃棒前進。這是為什麼呢?難道光線不再直進了嗎?這些現象引起了丁達爾的注意,經過他的研究,發現這是光的全反射   的作用,由於水等介質密度比周圍的物質(如空氣)大,即光從水中射向空氣,當入射角大於某一角度時,折射光線消失,全部光線都反射回水中。表面上看,光好像在水流中彎曲前進。

後來人們造出一種透明度很高、粗細像蜘蛛絲一樣的玻璃絲──玻璃纖維,當光線以合適的角度射入玻璃纖維時,光就沿著彎彎曲曲的玻璃纖維前進。由於這種纖維能夠用來傳輸光線,所以稱它為光導纖維。

大事記

1880 AlexandraGrahamBell發明光束通話傳輸

光纖 光纖

1960 電射及光纖之發明

1960 玻璃纖維的傳輸損耗大於1000dB/km,其他材料包括光圈波導、氣體透鏡波導、空心金屬波導管等

1966 七月,英籍、華裔學者高錕博士(K.C.Kao)在PIEE 雜誌上發表論文《光頻率的介質纖維表面波導》,從理論上分析證明了用光纖作為傳輸媒體以實現光通信的可能性,並預言了製造通信用的超低耗光纖的可能性

1970美國康寧公司三名科研人員馬瑞爾、卡普隆、凱克用改進型化學相沉積法(MCVD 法)成功研製成傳輸損耗只有20dB/km的低損耗石英光纖。

1970 美國貝爾實驗室研製出世界上第一隻在室溫下連續波工作的砷化鎵鋁半導體雷射器

1972 傳輸損耗降低至4dB/km

1974 美國貝爾研究所發明了低損耗光纖製作法――CVD法(汽相沉積法),使光纖傳輸損耗降低到1.1dB/km。

1976 美國在亞特蘭大的貝爾實驗室地下管道開通了世界上第一條光纖通信系統的試驗線路。採用一條擁有144個光纖的光纜以44.736Mbps的速率傳輸信號,中繼距離為10 km。採用的是多模光纖,光源用的是發光管LED,波長是0.85微米的紅外光。

1976 傳輸損耗降低至0.5dB/km

1977 貝爾研究所和日本電報電話公司幾乎同時研製成功壽命達100萬小時(實用中10年左右)的半導體雷射器

1977 世界上第一條光纖通信系統在美國芝加哥市投入商用,速率為45Mb/s

1977 首次實際安裝電話光纖網路

1978 FORT在法國首次安裝其生產之光纖電

1979趙梓森拉制出我國自主研發的第一根實用光纖,被譽為“中國光纖之父”

1979 傳輸損耗降低至0.2dB/km

1980 多模光纖通信系統商用化(140Mb/s),並著手單模光纖通信系統的現場試驗工作

1990 單模光纖通信系統進入商用化階段(565Mb/s),並著手進行零色散移位光纖和波分復用及相干通信的現場試驗,而且陸續制定數字同步體系(SDH)的技術標準

1990 傳輸損耗降低至0.14dB/km,已經接近石英光纖的理論衰耗極限值0.1dB/km

1990 區域網路及其他短距離傳輸套用之光纖

1992貝爾實驗室與日本合作夥伴成功地試驗了可以無錯誤傳輸9000公里的光放大器,其最初速率為5Gbps,隨後增加到10Gbps

1993 SDH產品開始商用化(622Mb/s 以下)

1995 2.5Gb/s 的SDH產品進入商用化階段

1996 10Gb/s 的SDH產品進入商用化階段

1997 採用波分復用技術(WDM)的20Gb/s 和40Gb/s 的SDH產品試驗取得重大突破

2000 到屋邊光纖=>到桌邊光纖

2005 3.2Tbps超大容量的光纖通信系統在上海至杭州開通

2005 FTTH(Fiber To The Home)光纖直接到家庭

原理種類

光及其特性:

1.光是一種電磁波

可見光部分波長範圍是:390~760nm(納米)。大於760nm部分是紅外光,小於390nm部分是紫外光。光纖中套用的是:850nm,1310nm,1550nm三種。

2.光的折射,反射和全反射。

因光在不同物質中的傳播速度是不同的,所以光從一種物質射向另一種物質時,在兩種物質的交界面處會產生折射和反射。而且,折射光的角度會隨入射光的角度變化而變化。當入射光的角度達到或超過某一角度時,折射光會消失,入射光全部被反射回來,這就是光的全反射。不同的物質對相同波長光的折射角度是不同的(即不同的物質有不同的光折射率),相同的物質對不同波長光的折射角度也是不同。光纖通訊就是基於以上原理而形成的。

1.光纖裸纖一般分為三層:中心高折射率玻璃芯(芯徑一般為50或62.5μm),中間為低折射率矽玻璃包層(直徑一般為125μm),最外是加強用的樹脂塗層。光線在纖芯傳送,當光纖射到纖芯和外層界面的角度大於產生全反射的臨界角時,光線透不過界面,會全部反射回來,繼續在纖芯內向前傳送,而包層主要起到保護的作用。

光纖 光纖

2.數值孔徑:

入射到光纖端面的光並不能全部被光纖所傳輸,只是在某個角度範圍內的入射光才可以。這個角度就稱為光纖的數值孔徑。光纖的數值孔徑大些對於光纖的對接是有利的。不同廠家生產的光纖的數值孔徑不同(AT&T CORNING)。

3.光纖的種類:

光纖的種類很多,根據用途不同,所需要的功能和性能也有所差異。但對於有線電視和通信用的光纖,其設計和製造的原則基本相同,諸如:

①損耗小;

②有一定頻寬且色散小;

③接線容易;

④易於成統;

⑤可靠性高;

⑥製造比較簡單;

⑦價廉等。光纖的分類主要是從工作波長、折射率分布、傳輸模式、原材料和製造方法上作一歸納的,茲將各種分類舉例如下。

(1)工作波長:紫外光纖、可觀光纖、近紅外光纖、紅外光纖(0.85μm、1.3μm、1.55μm)。

(2)折射率分布:階躍(SI)型光纖、近階躍型光纖、漸變(GI)型光纖、其它(如三角型、W型、凹陷型等)。

(3)傳輸模式:單模光纖(含偏振保持光纖、非偏振保持光纖)、多模光纖。

(4)原材料:石英光纖、多成分玻璃光纖、塑膠光纖、複合材料光纖(如塑膠包層、液體纖芯等)、紅外材料等。按被覆材料還可分為無機材料(碳等)、金屬材料(銅、鎳等)和塑膠等。

(5)製造方法:預塑有汽相軸向沉積(VAD)、化學汽相沉積(CVD)等,拉絲法有管律法(Rod intube)和雙坩鍋法等。

石英光纖

石英光纖(Silica Fiber)是以二氧化矽(SiO2)為主要原料,並按不同的摻雜量,來控制纖芯和包層的折射率分布的光纖。石英(玻璃)系列光纖,具有低耗、寬頻的特點,已廣泛套用於有線電視和通信系統。

石英玻璃光導纖維的優點是損耗低,當光波長為1.0~1.7μm(約1.4μm附近),損耗只有1dB/km,在1.55μm處最低,只有0.2dB/km。

摻氟光纖

摻氟光纖(Fluorine Doped Fiber)為石英光纖的典型產品之一。通常,作為1.3μm波域的通信用光纖中,控制纖芯的摻雜物為二氧化鍺(GeO2),包層是用SiO2作成的。但接氟光纖的纖芯,大多使用SiO2,而在包層中卻是摻入氟素的。由於,瑞利散射損耗是因折射率的變動而引起的光散射現象。所以,希望形成折射率變動因素的摻雜物,以少為佳。氟素的作用主要是可以降低SIO2的折射率。因而,常用於包層的摻雜。

石英光纖與其它原料的光纖相比,還具有從紫外線光到近紅外線光的透光廣譜,除通信用途之外,還可用於導光和圖像傳導等領域。

紅外光纖

作為光通信領域所開發的石英系列光纖的工作波長,儘管用在較短的傳輸距離,也只能用於2μm。為此,能在更長的紅外波長領域工作,所開發的光纖稱為紅外光纖。紅外光纖(Infrared Optical Fiber)主要用於光能傳送。例如有:溫度計量、熱圖像傳輸、雷射手術刀醫療、熱能加工等等,普及率尚低。

複合光纖

複合光纖(Compound Fiber)是在SiO2原料中,再適當混合諸如氧化鈉(Na2O)、氧化硼(B2O3)、氧化鉀(K2O)等氧化物製作成多組分玻璃光纖,特點是多組分玻璃比石英玻璃的軟化點低且纖芯與包層的折射率差很大。主要用在醫療業務的光纖內窺鏡。

氟氯化物光纖

氟化物光纖氯化物光纖(Fluoride Fiber)是由氟化物玻璃作成的光纖。這種光纖原料又簡稱 ZBLAN(即將氟化鋯(ZrF2)、氟化鋇(BaF2)、氟化鑭(LaF3)、氟化鋁(AlF3)、氟化鈉(NaF)等氯化物玻璃原料簡化成的縮語。主要工作在2~10μm波長的光傳輸業務。由於ZBLAN具有超低損耗光纖的可能性,正在進行著用於長距離通信光纖的可行性開發,例如:其理論上的最低損耗,在3μm波長時可達10.2~10.3dB/km,而石英光纖在1.55μm時卻在0.15~0.16dB/Km之間。ZBLAN光纖由於難於降低散射損耗,只能用在2.4~2.7μm的溫敏器和熱圖像傳輸,尚未廣泛實用。最近,為了利用ZBLAN進行長距離傳輸,正在研製1.3μm的摻鐠光纖放大器(PDFA)。

塑包光纖

塑包光纖(Plastic Clad Fiber)是將高純度的石英玻璃作成纖芯,而將折射率比石英稍低的如矽膠等塑膠作為包層的階躍型光纖。它與石英光纖相比較,具有纖芯粗、數值孔徑(NA)高的特點。因此,易與發光二極體LED光源結合,損耗也較小。所以,非常適用於區域網路(LAN)和近距離通信。

塑膠光纖

光纖 光纖

這是將纖芯和包層都用塑膠(聚合物)作成的光纖。早期產品主要用於裝飾和導光照明及近距離光鍵路的光通信中。原料主要是有機玻璃(PMMA)、聚苯乙稀(PS)和聚碳酸酯(PC)。損耗受到塑膠固有的C-H結合結構制約,一般每km可達幾十dB。為了降低損耗正在開發套用氟索系列塑膠。由於塑膠光纖(Plastic Optical fiber)的纖芯直徑為1000μm,比單模石英光纖大100倍,接續簡單,而且易於彎曲施工容易。近年來,加上寬頻化的進度,作為漸變型(GI)折射率的多模塑膠光纖的發展受到了社會的重視。最近,在汽車內部LAN中套用較快,未來在家庭LAN中也可能得到套用。

單模光纖

單模光纖這是指在工作波長中,只能傳輸一個傳播模式的光纖,通常簡稱為單模光纖(SMF:Single ModeFiber)。目前,在有線電視和光通信中,是套用最廣泛的光纖。由於,光纖的纖芯很細(約10μm)而且折射率呈階躍狀分布,當歸一化頻率V參數

相關詞條

相關搜尋

熱門詞條

聯絡我們