、光合作用機理
光合作用的是能量及物質的轉化過程。首先光能轉化成電能,經電子傳遞產生ATP和NADPH形式的不穩定化學能,最終轉化成穩定的化學能儲存在糖類化合物中。分為光反應(light reaction)和暗反應(dark reaction),前者需要光,涉及水的光解和光合磷酸化,後者不需要光,涉及CO2的固定。分為C3和C4兩類。
(一)光合色素和電子傳遞鏈組分
1.光合色素
類囊體中含兩類色素:葉綠素和橙黃色的類胡蘿蔔素,通常葉綠素和類胡蘿蔔素的比例約為3:1,chla與chlb也約為3:l,全部葉綠素和幾乎所有的類胡蘿蔔素都包埋在類囊體膜中,與蛋白質以非共價鍵結合,一條肽鏈上可以結合若干色素分子,各色素分子間的距離和取向固定,有利於能量傳遞。
2.集光複合體(light harvesting complex)
由大約200個葉綠素分子和一些肽鏈構成。大部分色素分子起捕獲光能的作用,並將光能以誘導共振方式傳遞到反應中心色素。因此這些色素被稱為天線色素。葉綠體中全部葉綠素b和大部分葉綠素a都是天線色素。另外類胡蘿蔔素和葉黃素分子也起捕獲光能的作用,叫做輔助色素。
3.光系統Ⅱ(PSⅡ)
吸收高峰為波長680nm處,又稱P680。至少包括12條多肽鏈。位於基粒於基質非接觸區域的類囊體膜上。包括一個集光複合體(light-hawesting comnplex Ⅱ,LHC Ⅱ)、一個反應中心和一個含錳原子的放氧的複合體(oxygen evolving complex)。D1和D2為兩條核心肽鏈,結合中心色素P680、去鎂葉綠素(pheophytin)及質體醌(plastoquinone)。
4.細胞色素b6/f複合體(cyt b6/f complex)
可能以二聚體形成存在,每個單體含有四個不同的亞基。細胞色素b6(b563)、細胞色素f、鐵硫蛋白、以及亞基Ⅳ(被認為是質體醌的結合蛋白)。
5.光系統Ⅰ(PSI)
能被波長700nm的光激發,又稱P700。包含多條肽鏈,位於基粒與基質接觸區和基質類囊體膜中。由集光複合體Ⅰ和作用中心構成。結合100個左右葉綠素分子、除了幾個特殊的葉綠素為中心色素外外,其它葉綠素都是天線色素。三種電子載體分別為A0(一個chla分子)、A1(為維生素K1)及3個不同的4Fe-4S。
(二)光反應與電子傳遞
P680接受能量後,由基態變為激發態(P680*),然後將電子傳遞給去鎂葉綠素(原初電子受體),P680*帶正電荷,從原初電子供體Z(反應中心D1蛋白上的一個酪氨酸側鏈)得到電子而還原;Z+再從放氧複合體上獲取電子;氧化態的放氧複合體從水中獲取電子,使水光解。
2H 2O→O2 + 4H+ + 4e-
在另一個方向上去鎂葉綠素將電子傳給D2上結合的QA,QA又迅速將電子傳給D1上的QB,還原型的質體醌從光系統Ⅱ複合體上游離下來,另一個氧化態的質體醌占據其位置形成新的QB。質體醌將電子傳給細胞色素b6/f複合體,同時將質子由基質轉移到類囊體腔。電子接著傳遞給位於類囊體腔一側的含銅蛋白質體藍素(plastocyanin, PC)中的Cu2+,再將電子傳遞到光系統Ⅱ。
P700被光能激發後釋放出來的高能電子沿著A0→ A1 →4Fe-4S的方向依次傳遞,由類囊體腔一側傳向類囊體基質一側的鐵氧還蛋白(ferredoxin,FD)。最後在鐵氧還蛋白-NADP還原酶的作用下,將電子傳給NADP+,形成NADPH。失去電子的P700從PC處獲取電子而還原
以上電子呈Z形傳遞的過程稱為非循環式光合磷酸化,當植物在缺乏NADP+時,電子在光系統內Ⅰ流動,只合成ATP,不產生NADPH,稱為循環式光合磷酸化。
(三)光合磷酸化
一對電子從P680經P700傳至NADP+,在類囊體腔中增加4個H+,2個來源於H2O光解,2個由PQ從基質轉移而來,在基質外一個H+又被用於還原NADP+,所以類囊體腔內有較高的H+(pH≈5,基質pH≈8),形成質子動力勢,H+經ATP合酶,滲入基質、推動ADP和Pi結合形成ATP。
ATP合酶,即CF1-F0偶聯因子,結構類似於線粒體ATP合酶。CF1同樣由5種亞基組成α3β3γδε的結構。CF0嵌在膜中,由4種亞基構成,是質子通過類囊體膜的通道。
(四)暗反應
C3途徑(C3 pathway):亦稱卡爾文 (Calvin)循環。CO2受體為RuBP,最初產物為3-磷酸甘油酸(PGA)。
C4途徑(C4 pathway) :亦稱哈奇-斯萊克(Hatch-Slack)途徑,CO2受體為PEP,最初產物為草醯乙酸(OAA)。
景天科酸代謝途徑(Crassulacean acid metabolism pathway,CAM途徑):夜間固定CO2產生有機酸,白天有機酸脫羧釋放CO2,進行CO2固定。
三、葉綠體的半自主性
線粒體與葉綠體都是細胞內進行能量轉換的場所,兩者在結構上具有一定的相似性。①均由兩層膜包被而成,且內外膜的性質、結構有顯著的差異。②均為半自主性細胞器,具有自身的DNA和蛋白質合成體系。因此綠色植物的細胞記憶體在3個遺傳系統。
葉綠體DNA由Ris和Plaut 1962最早發現於衣藻葉綠體。
ctDNA呈環狀,長40~60μm,基因組的大小因植物而異,一般約200Kb-2500Kb。數目的多少植物的發育階段有關,如菠菜幼苗葉肉細胞中,每個細胞含有20個葉綠體,每個葉綠體含DNA分子200個,但到接近成熟的葉肉細胞中有葉綠體150個,每個葉綠體含30個DNA分子。
和線粒體一樣,葉綠體只能合成自身需要的部分蛋白質,其餘的是在細胞質激離的核糖體上合成的,必需運送到葉綠體,才能發揮葉綠體應有的功能。已知由ctDNA編碼的RNA和多肽有:葉綠體核糖體中4種rRNA(20S、16S、4.5S及5S),20種(菸草)或31種(地錢)tRNA,約90多種多肽。
由於葉綠體在形態、結構、化學組成、遺傳體系等方面與藍細菌相似,人們推測葉綠體可能也起源於內共生的方式,是寄生在細胞內的藍藻演化而來的。
四、葉綠體的增殖
在個體發育中葉綠體由原質體發育而來,原質體存在於根和芽的分生組織中,由雙層被膜包圍,含有DNA,一些小泡和澱粉顆粒的結構,但不含片層結構,小泡是由質體雙層膜的內膜內折形成的。
在有光條件原質體的小泡數目增加並相互融合形成片層,多個片層平行排列成行,在某些區域增殖,形成基粒,變成綠色原質體發育成葉綠體。
在黑暗性長時,原質體小泡融合速度減慢,並轉變為排列成格線的小管的三維晶格結構,稱為原片層,這種質體稱為黃色體。黃色體在有光的情況下原片層彌散形成類囊體,進一步發育出基粒,變為葉綠體。
葉綠體能靠分裂而增殖,這各分裂是靠中部縊縮而實現的,在發育7天的 幼葉的基部2-2.5cm處很容易看到幼齡葉綠體呈啞鈴形狀,從菠菜幼葉含葉綠體少,ctDNA多,老葉含葉綠體多,每個葉綠體含ctDNA少的現象也可以看出葉綠體是以分裂的方式增殖的。
成熟葉綠體正常情況下一般不再分裂或很少分裂。
高等植物的葉綠體主要存在於葉肉細胞內,含有葉綠素。電鏡觀察表明: 葉綠體外有光滑的雙層單位膜,內膜向內疊成內囊體,若干內囊體垛疊成基粒。基粒內的某些內囊體內向外伸展,連線不同基粒。連線基粒的類囊體部分,稱為基質片層;構成基粒的類囊體部分,稱為基粒片層。
在個體發育上,葉綠體來自前質體,由前質體發育成葉綠體。
並且,無光不能形成葉綠素。
1940 德國人G. A. Kausche和H. Ruska 發表了世界第一張葉綠體的電鏡照片。