數學解釋
久期,全稱麥考利久期-Macaulay duration, 數學定義:如果市場利率是Y,現金流(X1,X2,...,Xn)的麥考利久期定義為:D(Y)=[1*X1/(1+Y)^1+2*X2/(1+Y)^2+...+n*Xn/(1+Y)^n]/[X0+x1/(1+Y)^1+X2/(1+Y)^2+...+Xn/(1+Y)^n]即 D=(1*PVx1+...n*PVxn)/PVx
其中,PVXi表示第i期現金流的現值,D表示久期。
通過下面例子可以更好理解久期的定義。
例子:假設有一債券,在未來n年的現金流為(X1,X2,...Xn),其中Xi表示第i期的現金流。假設利率為Y0,投資者持有現金流不久,利率立即發生升高,變為Y,問:應該持有多長時間,才能使得其到期的價值不低於利率為Y0的價值?
通過下面定理可以快速解答上面問題。
定理:PV(Y0)*(1+Y0)^q