伺服控制系統概述
servo mechanism伺服控制系統最初用於船舶的自動駕駛、火炮控制和指揮儀中,後來逐漸推廣到很多領域,特別是自動車床、天線位置控制、飛彈和飛船的制導等。採用伺服系統主要是為了達到下面幾個目的:①以小功率指令信號去控制大功率負載。火炮控制和船舵控制就是典型的例子。②在沒有機械連線的情況下,由輸入軸控制位於遠處的輸出軸,實現遠距同步傳動。③使輸出機械位移精確地跟蹤電信號,如記錄和指示儀表等。
衡量伺服控制系統性能的主要指標有頻頻寬度和精度。頻頻寬度簡稱頻寬,由系統頻率回響特性來規定,反映伺服系統的跟蹤的快速性。頻寬越大,快速性越好。伺服系統的頻寬主要受控制對象和執行機構的慣性的限制。慣性越大,頻寬越窄。一般伺服系統的頻寬小於15赫,大型設備伺服系統的頻寬則在1~2赫以下。自20世紀70年代以來,由於發展了力矩電機及高靈敏度測速機,使伺服系統實現了直接驅動,革除或減小了齒隙和彈性變形等非線性因素,使頻寬達到50赫,並成功套用在遠程飛彈、人造衛星、精密指揮儀等場所。伺服系統的精度主要決定於所用的測量元件的精度。因此,在伺服系統中必須採用高精度的測量元件,如精密電位器、自整角機和旋轉變壓器等。此外,也可採取附加措施來提高系統的精度,例如將測量元件(如自整角機)的測量軸通過減速器與轉軸相連,使轉軸的轉角得到放大,來提高相對測量精度。採用這種方案的伺服系統稱為精測粗測系統或雙通道系統。通過減速器與轉軸嚙合的測角線路稱精讀數通道,直接取自轉軸的測角線路稱粗讀數通道。
伺服控制系統按所用驅動元件的類型可分為機電伺服系統、液壓伺服系統和氣動伺服系統。
伺服控制系統的結構組成
機電一體化的伺服控制系統的結構,類型繁多,但從自動控制理論的角度來分析,伺服控制系統一般包括控制器,被控對象,執行環節,檢測環節,比較環節等五部分。1.比較環節;
比較環節是將輸入的指令信號與系統的反饋信號進行比較,以獲得輸出與輸入間的偏差信號的環節,通常由專門的電路或計算機來實現。2.控制器;
控制器通常是計算機或PID控制電路,其主要任務是對比較元件輸出的偏差信號進行變換處理,以控制執行元件按要求動作。3.執行環節;
執行環節的作用是按控制信號的要求,將輸入的各種形式的能量轉化成機械能,驅動被控對象工作.機電一體化系統中的執行元件一般指各種電機或液壓,氣動伺服機構等。4.被控對象;
機械參數量包括位移,速度,加速度,力,和力矩為被控對象。5.檢測環節;
檢測環節是指能夠對輸出進行測量並轉換成比較環節所需要的量綱的裝置,一般包括感測器和轉換電路。伺服控制系統的分類
?伺服系統的分類方法很多,常見的分類方法有以下三種.?
(1)按被控量參數特性分類.
(2)按驅動元件的類型分類.
(3)按控制原理分類. ? ?