《同位素》

《同位素》

我們知道這個世界就是由原子構成的,原子一般是由質子、中子和電子構成的。其中質子和中子構成原子核,處於原子中心,電子繞原子核在一定能量軌道上鏇轉運行。具有相同質子數但中子數不同的原子我們稱之為同位素,已發現的元素約110種。圖中的三種就是氫的同位素,我們給他們分別命名稱為氕,氘,氚,分別含0,1,2箇中子,後兩種也稱為重氫,自然界含量很少,多用於核聚變技術。

基本信息

簡介

定義

具有相同質子數,不同中子數(或不同質量數)同一元素的不同核素互為同位素[1]。
同位素同位素

這裡的原子是廣義的概念,指微觀粒子。
 例如氫有三種同位素, H氕、 D氘(又叫重氫)、 T氚(又叫超重氫);碳有多種同位素,例如 12C(12為上標,下同)、 14C等。在19世紀末先發現了放射性同位素,隨後又發現了天然存在的穩定同位素,並測定了同位素的豐度。大多數天然元素都存在幾種穩定的同位素。同種元素的各種同位素質量不同,但化學性質幾乎相同。許多同位素有重要的用途,例如 12C是作為確定原子量標準的原子; 兩種H原子是製造氫彈的材料; 235U是製造核子彈的材料和核反應堆的原料。同位素示蹤法廣泛套用於科學研究、工農業生產和醫療技術方面,例如用O標記化合物確證了酯化反應的歷程, I 用於甲狀腺吸碘機能的實驗等。
Isotopes [核]同位素
Isotopes are different atoms of a particular element that have the same number of protons but different numbers of neutrons.=)

概述

同位素是具有相同原子序數的同一化學元素的兩種或多種原子之一,在元素周期表上占有同一位置,化學行為幾乎相同,但原子質量或質量數不同,從而其質譜行為、放射性轉變和物理性質(例如在氣態下的擴散本領)有所差異。同位素的表示是在該元素符號的左上角註明質量數,例如碳14,一般用C14而不用14C.
自然界中與多元素都有同位素。同位素有的是天然存在的,有的是人工製造的,有的有放射性,有的沒有放射性。
同一元素的同位素雖然質量數不同,但他們的化學性質基本相同,物理性質有差異(主要表現在質量上)。自然界中,各種同位素的原子個數百分比一定。
同位素是指具有相同核電荷但不同原子質量的原子(核素)稱為同位素。自19世紀末發現了放射性以後,到20世紀初,人們發現的放射性元素已有30多種,而且證明,有些放射性元素雖然放射性顯著不同,但化學性質卻完全一樣。
1910年英國化學家F.索迪提出了一個假說,化學元素存在著相對原子質量和放射性不同而其他物理化學性質相同的變種,這些變種應處於周期表的同一位置上,稱做同位素。不久,就從不同放射性元素得到一種鉛的相對原子質量是206.08,另一種則是208。1897年英國物理學家J.J.湯姆遜(約瑟夫.約翰.湯姆遜)發現了電子,1912年他改進了測電子的儀器,利用磁場作用,製成了一種磁分離器(質譜儀的前身)。當他用氣進行測定時,無論氖怎樣提純,在屏上得到的卻是兩條拋物線,一條代表質量為20的氖,另一條則代表質量為22的氖。這就是第一次發現的穩定同位素,即無放射性的同位素。當F.W. 阿斯頓製成第一台質譜儀後,進一步證明,氖確實具有原子質量不同的兩種同位素,並從其他70多種元素中發現了200多種同位素。
到目前為止,己發現的元素有109種,只有20種元素未發現穩定的同位素,但所有的元素都有放射性同位素。大多數的天然元素都是由幾種同位素組成的混合物,穩定同位素約有300多種,而放射性同位素竟達約1500種以上。
1932年提出原子核的中子一質子理論以後,才進一步弄清,同位素就是一種元素存在著質子數相同而中子數不同的幾種原子。由於質子數相同,所以它們的核電荷和核外電子數都是相同的(質子數=核電荷數=核外電子數),並具有相同電子層結構。因此,同位素的化學性質是相同的,但由於它們的中子數不同,這就造成了各原子質量會有所不同,涉及原子核的某些物理性質(如放射性等),也有所不同。一般來說,質子數為偶數的元素,可有較多的穩定同位素,而且通常不少於3個,而質子數為奇數的元素,一般只有一個穩定核素,其穩定同位素從不會多於兩個,這是由核子的結合能所決定的。

同位素列表

同位素的發現,使人們對原子結構的認識更深一步。這不僅使元素概念有了新的含義,而且使相對原子質量的基準也發生了重大的變革,再一次證明了決定元素化學性質的是質子數(核電荷數),而不是原子質量數
已知同位素列表 質子數 1 2
中子數 氫 3 4
0 氕 鋰 鈹 5 6
1 氘 3He 硼 碳 7
2 氚 4He 5Li 6Be 8C 氮 8
3 4H 5He 6Li 7Be 8B 9C 氧 9
4 5H 6He 7Li 8Be 9B 10C 11N 氟 10
5 6H 8Li 9Be 10B 11C 12N 13O 氖 11
6 7H 8He 9Li 10Be 11B 12C 13N 14O 鈉 12
7 11Be 12B 13C 14N 15O 16F 17Ne 鎂 13
8 11Li 12Be 13B 14C 15N 16O 17F 18Ne 19Na 20Mg 鋁 14
9 14B 15C 16N 17O 18F 19Ne 20Na 21Mg 矽 15
10 14Be 15B 16C 17N 18O 19F 20Ne 21Na 22Mg 23Al 磷 16
11 17C 18N 19O 20F 21Ne 22Na 23Mg 24Al 25Si 硫 17
12 17B 18C 19N 20O 21F 22Ne 23Na 24Mg 25Al 26Si 27P 氯 18
13 19C 20N 21O 22F 23Ne 24Na 25Mg
26Al
27Si 28P 29S 氬 19
14 21N 22O 23F 24Ne 25Na 26Mg 27Al 28Si 29P 30S 31Cl 鉀 20
15 23O 24F 25Ne 26Na 27Mg 28Al 29Si 30P 31S 32Cl 33Ar 鈣
16 24O 25F 26Ne 27Na 28Mg 29Al 30Si 31P 32S 33Cl 34Ar 35K 21
17 27Ne 28Na 29Mg 30Al 31Si 32P 33S 34Cl 35Ar 36K 37Ca 鈧 22
18 29Na 30Mg 31Al 32Si 33P 34S 35Cl 36Ar 37K 38Ca 鈦 23
19 30Na 31Mg 32Al 33Si 34P 35S 36Cl 37Ar 38K 39Ca 40Sc 41Ti 釩 24
20 31Na 32Mg 33Al 34Si 35P 36S 37Cl 38Ar 39K 40Ca 41Sc 42Ti 鉻 25
21 32Na 34Al 35Si 36P 37S 38Cl 39Ar 40K 41Ca 42Sc 43Ti 44V 45Cr 錳 26
22 33Na 36Si 37P 38S 39Cl 40Ar 41K 42Ca 43Sc 44Ti 46Cr 鐵 27
23 38P 39S 40Cl 41Ar 42K 43Ca 44Sc 45Ti 46V 47Cr 49Fe 鈷 28
24 39P 40S 41Cl 42Ar 43K 44Ca 45Sc 46Ti 47V 48Cr 49Mn 50Fe 鎳 29
25 42Cl 43Ar 44K 45Ca
46Sc
47Ti 48V 49Cr 50Mn 51Fe 53Ni 銅 30
26 43Cl 44Ar 45K 46Ca 47Sc 48Ti 49V 50Cr 51Mn 52Fe 53Co 54Ni 鋅 31
27 45Ar 46K 47Ca 48Sc 49Ti 50V 51Cr
52Mn
53Fe 54Co 55Ni 57Zn 鎵 32
28 46Ar 47K 48Ca 49Sc 50Ti 51V 52Cr 53Mn 54Fe 55Co 56Ni 鍺
29 48K 49Ca 50Sc 51Ti 52V 53Cr 54Mn 55Fe 56Co 57Ni 58Cu 61Ge
30 49K 50Ca 51Sc 52Ti 53V 54Cr 55Mn 56Fe 57Co 58Ni 59Cu 60Zn
31 50K 53Ti 54V 55Cr 56Mn 57Fe
58Co
59Ni 60Cu 61Zn 33
32 55V 56Cr 57Mn 58Fe 59Co 60Ni 61Cu 62Zn 63Ga 64Ge 砷 34
33 57Cr 58Mn 59Fe
60Co
61Ni 62Cu 63Zn 64Ga 65Ge 硒 35 36
34 59Mn 60Fe 61Co 62Ni 63Cu 64Zn 65Ga 66Ge 68Se 溴 氪 37
35 61Fe 62Co 63Ni 64Cu 65Zn 66Ga 67Ge 68As 69Se 銣
36 62Fe 63Co 64Ni 65Cu 66Zn 67Ga 68Ge 69As 70Se 72Kr 38
37 64Co 65Ni 66Cu 67Zn 68Ga 69Ge 70As 71Se 72Br 73Kr 74Rb 鍶 39
38 66Ni 67Cu 68Zn 69Ga 70Ge 71As 72Se 73Br 74Kr 75Rb 釔 40
39 67Ni 68Cu 69Zn 70Ga
71Ge
72As 73Se 74Br 75Kr 76Rb 77Sr 鋯
40 68Ni 69Cu 70Zn 71Ga 72Ge 73As 74Se 75Br 76Kr 77Rb 78Sr
41 70Cu 71Zn 72Ga 73Ge 74As 75Se 76Br 77Kr 78Rb 79Sr 81Zr 41
42 72Zn 73Ga 74Ge 75As 76Se
77Br
78Kr 79Rb 80Sr 81Y 82Zr 鈮 42
43 73Zn 74Ga 75Ge 76As
77Se
78Br
79Kr
80Rb 81Sr 82Y 83Zr 84Nb 鉬
44 74Zn 75Ga 76Ge 77As 78Se
79Br
80Kr 81Rb 82Sr 83Y 84Zr 43
45 75Zn 76Ga 77Ge 78As
79Se
80Br
81Kr
82Rb
83Sr
84Y 85Zr 86Nb 87Mo 鎝
46 76Zn 77Ga 78Ge 79As 80Se 81Br 82Kr 83Rb 84Sr 85Y 86Zr 87Nb 88Mo 44
47 77Zn 78Ga 79Ge 80As 81Se
82Br
83Kr
84Rb
85Sr
86Y 87Zr 88Nb 89Mo 90Tc 釕 45
48 79Ga 80Ge 81As 82Se 83Br 84Kr 85Rb 86Sr
87Y
88Zr 89Nb 90Mo 91Tc 92Ru 銠 46
49 80Ga 81Ge 82As 83Se 84Br
85Kr
86Rb
87Sr
88Y
89Zr
90Nb 91Mo 92Tc 93Ru 鈀 47 48
50 81Ga 82Ge 83As 84Se 85Br 86Kr 87Rb 88Sr
89Y
90Zr
91Nb
92Mo 93Tc 94Ru 95Rh 銀 鎘
51 82Ga 83Ge 84As 85Se 86Br 87Kr 88Rb 89Sr
90Y
91Zr
92Nb
93Mo
94Tc 95Ru 96Rh 97Pd
52 83Ga 84Ge 85As 86Se 87Br 88Kr 89Rb 90Sr
91Y
92Zr
93Nb
94Mo
95Tc
96Ru 97Rh 98Pd 99Ag 100Cd 49
53 86As 87Se 88Br 89Kr 90Rb 91Sr 92Y 93Zr
94Nb
95Mo
96Tc
97Ru 98Rh 99Pd 100Ag 101Cd 銦 50 51 52
54 87As 88Se 89Br 90Kr 91Rb 92Sr 93Y 94Zr
95Nb
96Mo
97Tc
98Ru
99Rh
100Pd 101Ag 102Cd 錫 銻 碲
55 89Se 90Br 91Kr 92Rb 93Sr 94Y 95Zr 96Nb 97Mo 98Tc 99Ru 100Rh 101Pd 102Ag 103Cd 104In 107Te
56 91Br 92Kr 93Rb 94Sr 95Y 96Zr 97Nb 98Mo
99Tc
100Ru
101Rh
102Pd 103Ag 104Cd 105In 108Te
57 91Se 92Br 93Kr 94Rb 95Sr 96Y 97Zr 98Nb 99Mo 100Tc 101Ru 102Rh 103Pd 104Ag 105Cd 106In 107Sn 109Te 53 54
58 94Kr 95Rb 96Sr 97Y 98Zr 99Nb 100Mo 101Tc 102Ru
103Rh
104Pd
105Ag
106Cd 107In 108Sn 碘 氙 55
59 95Kr 96Rb 97Sr 98Y 99Zr 100Nb 101Mo 102Tc 103Ru 104Rh 105Pd
106Ag
107Cd 108In 109Sn 110Sb 111Te 113Xe 銫
60 97Rb 98Sr 99Y 100Zr 101Nb 102Mo 103Tc 104Ru
105Rh
106Pd
107Ag
108Cd 109In 110Sn 111Sb 112Te 56
61 97Kr 98Rb 99Sr 100Y 101Zr 102Nb 103Mo 104Tc 105Ru 106Rh
107Pd
108Ag
109Cd 110In 111Sn 112Sb 113Te 115Xe 116Cs 鋇
62 99Rb 102Zr 103Nb 104Mo 105Tc 106Ru 107Rh 108Pd
109Ag
110Cd
111In
112Sn 113Sb 114Te 115I 116Xe 117Cs
63 102Y 104Nb 105Mo 106Tc 107Ru 108Rh 109Pd
110Ag
111Cd
112In
113Sn
114Sb 115Te 116I 117Xe 118Cs 119Ba 57
64 105Nb 106Mo 107Tc 108Ru 109Rh 110Pd
111Ag
112Cd
113In
114Sn 115Sb 116Te 117I 118Xe 119Cs 鑭
65 106Nb 107Mo 108Tc 109Ru 110Rh 111Pd 112Ag
113Cd
114In
115Sn 116Sb 117Te 118I 119Xe 120Cs 121Ba
66 108Mo 109Tc 110Ru 111Rh 112Pd 113Ag 114Cd
115In
116Sn 117Sb 118Te 119I 120Xe 121Cs 122Ba
67 110Tc 111Ru 112Rh 113Pd 114Ag
115Cd
116In
117Sn
118Sb
119Te
120I 121Xe 122Cs 123Ba 58
68 112Ru 113Rh 114Pd 115Ag 116Cd 117In 118Sn 119Sb 120Te 121I 122Xe 123Cs 124Ba 125La 鈰
69 113Ru 114Rh 115Pd 116Ag 117Cd 118In
119Sn
120Sb
121Te
122I 123Xe 124Cs 125Ba 126La
70 116Pd 117Ag 118Cd 119In 120Sn 121Sb 122Te 123I 124Xe 125Cs 126Ba 127La 59
71 117Pd 118Ag 119Cd 120In
121Sn
122Sb
123Te
124I 125Xe 126Cs 127Ba 128La 129Ce 鐠 60
72 118Pd 119Ag 120Cd 121In 122Sn 123Sb 124Te 125I 126Xe 127Cs 128Ba 129La 130Ce 釹
73 120Ag 121Cd 122In
123Sn
124Sb
125Te
126I
127Xe
128Cs 129Ba 130La 131Ce 132Pr 61 62 63
74 121Ag 122Cd 123In 124Sn 125Sb 126Te 127I 128Xe 129Cs 130Ba 131La 132Ce 133Pr 134Nd 鉕 釤 銪
75 122Ag 124In
125Sn
126Sb
127Te
128I
129Xe
130Cs
131Ba
132La 133Ce 134Pr 135Nd 137Sm 64
76 123Ag 124Cd 125In 126Sn 127Sb 128Te 129I 130Xe 131Cs 132Ba 133La 134Ce 135Pr 136Nd 137Pm 138Sm 139Eu 釓
77 126In 127Sn 128Sb
129Te
130I
131Xe
132Cs
133Ba
134La 135Ce 136Pr 137Nd 138Pm 139Sm 140Eu 65
78 127In 128Sn 129Sb 130Te 131I 132Xe 133Cs 134Ba 135La 136Ce 137Pr 138Nd 139Pm 140Sm 141Eu 142Gd 鋱 66
79 128In 129Sn 130Sb
131Te
132I 133Xe
134Cs
135Ba
136La 137Ce 138Pr 139Nd 140Pm 141Sm 142Eu 143Gd 鏑 67 68 69
80 129In 130Sn 131Sb 132Te 133I 134Xe
135Cs
136Ba
137La 138Ce 139Pr 140Nd 141Pm 142Sm 143Eu 144Gd 鈥 鉺 銩 70
81 130In 131Sn 132Sb 133Te 134I 135Xe
136Cs
137Ba
138La
139Ce
140Pr 141Nd 142Pm 143Sm 144Eu 145Gd 146Tb 147Dy 鐿 71
82 131In 132Sn 133Sb 134Te 135I 136Xe 137Cs 138Ba 139La 140Ce 141Pr 142Nd 143Pm 144Sm 145Eu 146Gd 147Tb 148Dy 150Er 151Tm 鑥 72
83 132In 133Sn 134Sb 135Te 136I 137Xe 138Cs 139Ba 140La 141Ce 142Pr 143Nd 144Pm 145Sm 146Eu 147Gd 148Tb 149Dy 150Ho 151Er 鉿
84 134Sn 135Sb 136Te 137I 138Xe 139Cs 140Ba 141La 142Ce 143Pr 144Nd 145Pm 146Sm 147Eu 148Gd 149Tb 150Dy 151Ho 152Er 153Tm 154Yb 155Lu
85 136Sb 137Te 138I 139Xe 140Cs 141Ba 142La 143Ce 144Pr 145Nd 146Pm 147Sm 148Eu 149Gd 150Tb 151Dy 152Ho 153Er 154Tm 155Yb 156Lu 157Hf 73 74
86 138Te 139I 140Xe 141Cs 142Ba 143La 144Ce 145Pr 146Nd 147Pm 148Sm 149Eu 150Gd 151Tb 152Dy 153Ho 154Er 155Tm 156Yb 158Hf 鉭 鎢
87 140I 141Xe 142Cs 143Ba 144La 145Ce 146Pr 147Nd
148Pm
149Sm
150Eu
151Gd 152Tb 153Dy 154Ho 155Er 156Tm 157Yb 159Hf
88 141I 142Xe 143Cs 144Ba 145La 146Ce 147Pr 148Nd 149Pm 150Sm 151Eu 152Gd 153Tb 154Dy 155Ho 156Er 157Tm 158Yb 160Hf 162W
89 142I 143Xe 144Cs 145Ba 146La 147Ce 148Pr 149Nd 150Pm 151Sm
152Eu
153Gd 154Tb 155Dy 156Ho 157Er 158Tm 161Hf 163W
90 144Xe 145Cs 146Ba 147La 148Ce 149Pr 150Nd 151Pm 152Sm 153Eu 154Gd 155Tb 156Dy 157Ho 158Er 159Tm 160Yb 161Lu 164W 75 76
91 145Xe 146Cs 148La 149Ce 150Pr 151Nd 152Pm 153Sm
154Eu
155Gd
156Tb
157Dy 158Ho 159Er 160Tm 161Yb 162Lu 165W Re Os 77
92 150Ce 151Pr 152Nd 153Pm 154Sm 155Eu 156Gd 157Tb 158Dy 159Ho 160Er 161Tm 162Yb 166W 銥 78
93 151Ce 154Pm 155Sm 156Eu 157Gd
158Tb
159Dy 160Ho 161Er 162Tm 163Yb 164Lu 166Ta 169Os 鉑 79
94 154Nd 156Sm 157Eu 158Gd 159Tb 160Dy 161Ho 162Er 163Tm 164Yb 165Lu 166Hf 167Ta 170Os 171Ir 金 80
95 157Sm 158Eu 159Gd 160Tb 161Dy 162Ho 163Er 164Tm 165Yb 166Lu 167Hf 168Ta 170Re 171Os 172Ir 173Pt 汞
96 159Eu 160Gd 161Tb 162Dy
163Ho
164Er 165Tm 166Yb 167Lu 168Hf 169Ta 170W 172Os 171Ir 174Pt 175Au
97 160Eu 161Gd 162Tb 163Dy 164Ho 165Er 166Tm 167Yb 168Lu 169Hf 170Ta 171W 172Re 173Os 174Ir 175pt 176Au 177Hg
98 162Gd 163Tb 164Dy 165Ho 166Er 167Tm 168Yb
169Lu
170Hf 171Ta 172W 174Os 175Ir 176Pt 177Au 178Hg
99 164Tb 165Dy
166Ho
167Er
168Tm
169Yb
170Lu 171Hf 172Ta 173W 174Re 175Os 176Ir 177Pt 178Au 179Hg 81
100 166Dy 167Ho 168Er 169Tm 170Yb
171Lu
172Hf 173Ta 174W 175Re 176Os 177Ir 178Pt 179Au 180Hg Tb 82
101 167Dy 168Ho 169Er 170Tm 171Yb
172Lu
173Hf 174Ta 175W 176Re 177Os 178Ir 179Pt 181Hg Pb
102 169Ho 170Er 171Tm 172Yb 173Lu 174Hf 175Ta 176W 177Re 178Os 179Ir 180Pt 181Au 182Hg
103 170Ho 171Er 172Tm 173Yb 174Lu 175Hf 176Ta 177W 178Re 179Os 180Ir 181Pt 182Au 183Hg 184Tl 185Pb 83
104 172Er 173Tm 174Yb 175Lu 176Hf 177Ta 178W 179Re 180Os 181Ir 182Pt 183Au 184Hg 185Tl 186Pb 鉍
105 173Er 174Tm
175Yb
176Lu
177Hf
178Ta 179W 180Re 181Os 182Ir 183Pt 184Au 185Hg 186Tl 187Pb 84
106 175Tm
176Yb
177Lu
178Hf
179Ta 180W 181Re 182Os 183Ir 184Pt 185Au 186Hg 187Tl 188Pb 189Bi Po 85
107 176Tm 177Yb 178Lu
179Hf
180Ta
181W
182Re
183Os 184Ir 185Pt 186Au 187Hg 188Tl 189Pb 190Bi At
108 178Yb 179Lu
180Hf
181Ta 182W 183Re 184Os 185Ir 186Pt 187Au 188Hg 189Tl 190Pb 191Bi
109 180Lu 181Hf
182Ta
183W
184Re
185Os 186Ir 187Pt 188Au 189Hg 190Tl 191Pb 192Bi 193Po 194At
110
182Hf
183Ta 184W 185Re 186Os 187Ir 188Pt 189Au 190Hg 191Tl 192Pb 193Bi 194Po 195At 86
111 183Hf 184Ta
185W
186Re
187Os 188Ir 189Pt 190Au 191Hg 192Tl 193Pb 194Bi 195Po 196At Rn
112 184Hf 185Ta 186W 187Re 188Os 189Ir 190Pt 191Au 192Hg 193Tl 194Pb 195Bi 196Po 197At 87
113 185Hf 186Ta 187W 188Re
189Os
190Ir
191Pt 192Au 193Hg 194Tl 195Pb 196Bi 197Po 198At Fr
114 188w 189Re
190Os
191Ir
192Pt 193Au 194Hg 195Tl 196Pb 197Bi 198Po 199At 200Rn 88
115 189W 190Re 191Os
192Ir
193Pt
194Au
195Hg
196Tl 197Pb 198Bi 199Po 200At 201Rn Ra
116 190W 191Re
192Os
193Ir
194Pt
195Au
196Hg 197Tl 198Pb 199Bi 200Po 201At 202Rn 203Fr 89
117 192Re 193Os 194Ir
195Pt
196Au
197Hg
198Tl 199Pb 200Bi 201Po 202At 203Rn 204Fr Ac
118 194Os 195Ir 196Pt
197Au
198Hg
199Tl 200Pb 201Bi 202Po 203At 204Rn 205Fr 206Ra
119 195Os 196Ir 197Pt 198Au 199Hg 200Tl 201Pb 202Bi 203Po 204At 205Rn 206Fr 207Ra 90
120 196Os 197Ir 198Pt 199Au 200Hg 201Tl
202Pb
203Bi 204Po 205At 206Rn 207Fr 208Ra 209Ac Db
121 198Ir 199Pt 200Au 201Hg 202Tl
203Pb
204Bi 205Po 206At 207Rn 208Fr 209Ra 210Ac 91
122 200Pt 201Au 202Hg 203Tl
204Pb
205Bi 206Po 207At 208Rn 209Fr 210Ra 211Ac Pu
123 201Pt 202Au 203Hg 204Tl 205Pb 206Bi 207Po 208At 209Rn 210Fr 211Ra 212Ac 213Th
124 203Au 204Hg 205Tl 206Pb 207Bi 208Po 209At 210Rn 211Fr 212Ra 213Ac 214Th
125 204Au 205Hg 206Tl
207Pb
208Bi 209Po 210At 211Rn 212Fr 213Ra 214Ac 215Th 216Pa
126 206Hg 207Tl 208Pb 209Bi 210Po 211At 212Rn 213Fr 214Ra 215Ac 216Th
127 208Tl 209Pb
210Bi
211Po 212At 213Rn 214Fr 215Ra 216Ac 217Th
128 209Tl 210Pb 211Bi 212Po 213At 214Rn 215Fr 216Ra 217Ac 218Th
129 210Tl 211Pb 212Bi 213Po 214At 215Rn 216Fr 217Ra 218Ac 219Th
130 212Pb 213Bi 214Po 215At 216Rn 217Fr 218Ra 219Ac 220Th
131 213Pb 214Bi 215Po 216At 217Rn 218Fr 219Ra 220Ac 221Th 222Pa 92
132 214Pb 215Bi 216Po 217At 218Rn 219Fr 220Ra 221Ac 222Th 223Pa U 93
133 217Po 218At 219Rn 220Fr 221Ra 222Ac 223Th 224Pa Np 94
134 218Po 219At 220Rn 221Fr 222Ra 223Ac 224Th 225Pa 226U Pu 95
135 221Rn 222Fr 223Ra 224Ac 225Th 226Pa 227U 228Np Am
136 222Rn 223Fr 224Ra 225Ac 226Th 227Pa 228U 229Np 96
137 223Rn 224Fr 225Ra 226Ac 227Th 228Pa 229U 230Np 232Am Cm
138 224Rn 225Fr 226Ra 227Ac 228Th 229Pa 230U 231Np 232Pu
139 225Rn 226Fr 227Ra 228Ac 229Th 230Pa 231U 232Np 233Pu 234Am 97 98 99 100
140 226Rn 227Fr 228Ra 229Ac 230Th 231Pa 232U 233Np 234Pu 235Am 236Cm Bk Cf Es Fm
141 228Fr 229Ra 230Ac 231Th 232Pa 233U 234Np 235Pu 236Am 237Cm
142 229Fr 230Ra 231Ac 232Th 233Pa 234U 235Np 236Pu 237Am 238Cm 239Bk 240Cf 241Es 242Fm
143 232Ac 233Th 234Pa
235U
236Np
237Pu 238Am 239Cm 240Bk 241Cf 242Es 243Fm
144 234Th 235Pa 236U 237Np 238Pu 239Am 240Cm 241Bk 242Cf 243Es 244Fm 101
145 235Th 236Pa 237U 238Np 239Pu 240Am 241Cm 242Bk 243Cf 244Es 245Fm Md 102
146 236Th 237Pa 238U 239Np 240Pu 241Am 242Cm 243Bk 244Cf 245Es 246Fm No 103 104
147 238Pa 239U 240Np 241Pu
242Am
243Cm 244Bk 245Cf 246Es 247Fm 248Md Lr Rf 105
148 240U 241Np 242Pu 243Am 244Cm 245Bk 246Cf 247Es 248Fm 249Md 250No Db
149 243Pu 244Am 245Cm 246Bk 247Cf 248Es 249Fm 250Md 251No 252Lr 253Rf 106
150 244Pu 245Am 246Cm 247Bk 248Cf 249Es 250Fm 251Md 252No 253Lr 254Rf 255Db Sg 107
151 245Pu 246Am 247Cm
248Bk
249Cf 250Es 251Fm 252Md 253No 254Lr 255Rf 256Db Bh
152 246Pu 247Am 248Cm 249Bk 250Cf 251Es 252Fm 253Md 254No 255Lr 256Rf 257Db 258Sg 108
153 249Cm 250Bk 251Cf 252Es 253Fm 254Md 255No 256Lr 257Rf 258Db 259Sg 260Bh Hs 109
154 250Cm 251Bk 252Cf 253Es 254Fm 255Md 256No 257Lr 258Rf 259Db 260Sg 261Bh Mt 110
155 251Cm 252Bk 253Cf
254Es
255Fm 256Md 257No 258Lr 259Rf 260Db 261Sg 262Bh 263Hs Ds 111 112 113 114 115 116 117 118
156 253Bk 254Cf 255Es 256Fm 257Md 258No 259Lr 260Rf 261Db 262Sg 263Bh 264Hs 265Mt Rg Uub uut uuq uup Uuh uus Uuo
157 254Bk 255Cf 256Es 257Fm 258Md 259No 260Lr 261Rf 262Db 263Sg 264Bh 265Hs 266Mt 267Ds
158 256Cf 257Es 258Fm 259Md 260No 261Lr 262Rf 263Db 264Sg 265Bh 266Hs 267Mt 268Ds
159 259Fm 260Md 261No 262Lr 263Rf 264Db 265Sg 266Bh 267Hs 268Mt 269Ds
160 262No 263Lr 264Rf 265Db 266Sg 267Bh 268Hs 269Mt 270Ds
161 269Hs 270Mt 271Ds 272Rg
162 271Mt 272Ds
163
164
165 277Uub 278Uut
166
167
168 279Rg
169 280Rg
170
171 284Uut
172
173 285Uub 288Uup
174
175 289Uuq
176 292Uuh
177
178
179
180

同位素和其他核技術的開發套用

和平利用核能的重要方面,也是核工業為國民經濟和人民生活服務的一個重要內容。
1982年,核工業部成立了中國同位素公司,負責組織同位素生產、供應和進出口貿易。中國核學會成立了核農學、核醫學、核能動力、輻射工藝、同位素等19個分會。並多次召開各有關專業會議,推廣核能、同位素和其他核技術的套用。
我國同位素能生產的品種越來越多,包括放射性藥物、各种放射源、氫-3、碳-l4等標記化合物、放化製劑、放射免疫分析用的各種試劑盒和穩定同位素及其標記化合物等。同位素的生產單位中中國原子能科學研究院同位素的生產量,就占全國的總量的80%以上。我國同位素在國內的用戶,由過去主要依靠進口,逐步轉為大部分由國內生產自給。
隨著同位素生產的發展,進一步促進了同位素和其他核技術在許多部門的套用,並取得了明顯的經濟效益和社會效益。
農業方面,採用輻射方法或輻射和其他方法相結合,培育出農作物優良品種,使糧食、棉花、大豆等農作物都獲得了較大的增產。利用同位素示蹤技術研究農藥和化肥的合理使用及土壤的改良等,為農業增產提供了新的措施。其他如輻射保藏食品等研究工作,也取得了較大的進展。
醫學方面,全國有上千家醫療單位,在臨床上已建立了百多項同位素治療方法,包括體外照射治療和體內藥物照射治療。同位素在免疫學、分子生物學、遺傳工程研究和發展基礎核醫學中,也發揮了重要作用

放射性同位素

一、有關放射性元素的基礎知識
放射性同位素放射性同位素

1.為什麼同位素具有放射性
如果兩個原子質子數目相同,但中子數目不同,則他們仍有相同的原子序,在周期表是同一位置的元素,所以兩者就叫同位素。有放射性的同位素稱為“放射性同位素”,沒有放射性的則稱為“穩定同位素”,並不是所有同位素都具有放射性。
自19世紀末發現了放射性以後,到20世紀初,人們發現的放射性元素已有30多種,而且證明,有些放射性元素雖然放射性顯著不同,但化學性質卻完全一樣。
1910年英國化學家F.索迪提出了一個假說,化學元素存在著相對原子質量和放射性不同而其他物理化學性質相同的變種,這些變種應處於周期表的同一位置上,稱做同位素。
不久,就從不同放射性元素得到一種鉛的相對原子質量是206.08,另一種則是208。1897年英國物理學家W.湯姆遜發現了電子,1912年他改進了測電子的儀器,利用磁場作用,製成了一種磁分離器(質譜儀的前身)。當他用氖氣進行測定時,無論氖怎樣提純,在屏上得到的卻是兩條拋物線,一條代表質量為20的氖,另一條則代表質量為22的氖。這就是第一次發現的穩定同位素,即無放射性的同位素。當F.W. 阿斯頓製成第一台質譜儀後,進一步證明,氖確實具有原子質量不同的兩種同位素,並從其他70多種元素中發現了200多種同位素。到目前為止,己發現的元素有109種,只有20種元素未發現穩定的同位素,但所有的元素都有放射性同位素。大多數的天然元素都是由幾種同位素組成的混合物,穩定同位素約300多種,而放射性同位素竟達1500種以上。
1932年提出原子核的中子一質子理論以後,才進一步弄清,同位素就是一種元素存在著質子數相同而中子數不同的幾種原子。由於質子數相同,所以它們的核電荷和核外電子數都是相同的(質子數=核電荷數=核外電子數),並具有相同電子層結構。因此,同位素的化學性質是相同的,但由於它們的中子數不同,這就造成了各原子質量會有所不同,涉及原子核的某些物理性質(如放射性等),也有所不同。一般來說,質子數為偶數的元素,可有較多的穩定同位素,而且通常不少於3個,而質子數為奇數的元素,一般只有一個穩定核素,其穩定同位素從不會多於兩個,這是由核子的結合能所決定的。
同位素的發現,使人們對原子結構的認識更深一步。這不僅使元素概念有了新的含義,而且使相對原子質量的基準也發生了重大的變革,再一次證明了決定元素化學性質的是質子數(核電荷數),而不是原子質量數。
2.放射性同位素的特點
放射性同位素(radioisotope)是不穩定的,它會“變”。放射性同位素的原子核很不穩定,會不間斷地、自發地放射出射線,直至變成另一種穩定同位素,這就是所謂“核衰變”。放射性同位素在進行核衰變的時候,可放射出α射線、β射線、γ射線和 電子俘獲等,但是放射性同位素在進行核衰變的時候並不一定能同時放射出這幾種射線。核衰變的速度不受溫度、壓力、電磁場等外界條件的影響,也不受元素所處 狀態的影響,只和時間有關。放射性同位素衰變的快慢,通常用“半衰期”來表示。半衰期(half-life)即一定數量放射性同位素原子數目減少到其初始 值一半時所需要的時間。如P(磷)-32的半衰期是14.3天,就是說,假使原來有100萬個P(磷)-32 原子,經過14.3天后,只剩下50萬個了。半衰期越長,說明衰變得越慢,半衰期越短,說明衰變得越快。半衰期是放射性同位素的一特徵常數,不同的放射性 同位素有不同的半衰期,衰變的時候放射出射線的種類和數量也不同。
3.放射性強度及其度量單位
放射性同位素原子數目的減少服從指數規律。隨著時間的增加,放射性原子的數目按幾何級數減少,用公式表示為: N=N0e- λt這裡,N為經過t時間衰變後,剩下的放射性原子數目,N0為初始的放射性原子數目,λ為衰變常數,是與該种放射性同位素性質有關的常數,λ=y(t) =e-0.693t/τ,其中τ指半衰期。放射性同位素不斷地衰變,它在單位時間內發生衰變的原子數目叫做放射性強度(radioactivity),放 射性強度的常用單位是居里(curie),表示在1秒鐘內發生3.7×1010次核衰變,符號Ci。 1Ci=3.7×1010dps=2.22×1012dpm 1mCi=3.7×107dps=2.22×109dpm 1μCi=3.7×104dps=2.22×106dpm 1977年國際放射防護委員會(ICRP)發表的第26號出版物中,根據國際輻射單位 與測量委員會(ICRU)的建議,對放射性強度等計算單位採用了國際單位制(SI), 我國於1986年正式執行。在SI中,放射性強度單位用貝柯勒爾(becquerel)表示,簡稱貝可,為1秒鐘內發生一次核衰變,符號為Bq。1Bq=1dps=2.703×10-11Ci該單位在實 際套用中減少了換算步驟,方便了使用。
4.射線與物質的相互作用
放射性同位素放射出的射線碰到各種物質的時候,會產生各種效應,它包括射線對物質的作用和物質對射線的作用兩個相互聯繫的方面。例如,射線能夠使照相底片 和核子乳膠感光;使一些物質產生螢光;可穿透一定厚度的物質,在穿透物質的過程 中,能被物質吸收一部分,或者是散射一部分,還可能使一些物質的分子發生電離; 另外,當射線輻照到人、動物和植物體時,會使生物體發生生理變化。射線與物質的 相互作用,對核射線來說,它是一種能量傳遞和能量損耗過程,對受照射物質來說, 它是一種對外來能量的物理性反應和吸收過程。
各種射線由於其本身的性質不同,與物質的相互作用各有特點。這種特點還常與物質的密度和原子序數有關。α射線通過物質時,主要是通過電離和激發把它的輻射 能量轉移給物質,其射程很短,一個1兆電子伏(1MeV)的α射線,在空氣中的射程 約1.0<厘米,在鉛金屬中只有23微米(μm),一張普通紙就能將α射線完全擋住,但α射線的能量能被組織和器官全部吸收。β射線也能引起物質電 離和激發,與α射線 的能量相同的β射線,在同一物質中的射程比α要長得多,如>1MeVrβ射線,在空氣 中的射程是10米,高能量快速運動的β粒子,如磷-,能量為1.71MeV遇到物質,特別是突然被原子序數高的物質(如鉛,原子序數為82)阻止後,運動 方向會發生改變,產生軔致輻射。軔致輻射是一種連續的電磁輻射,它發生的幾率與β射線的能量 和物質的原子序數成正比,因此在防護上採用低密度材料,以減少軔致輻射。β射線能被不太厚的鋁層等吸收。γ射線的穿透力最強,射程最大,1MeV的r射線 在空氣中的射程約有米之遠,r射線作用於物質可產生光電效應、康普頓效應和電子對效應,它不會被物質完全吸收,只會隨著物質厚度的增加而逐漸減弱。
二、放射性同位素的主要作用(套用)
主要方面:
1.射線照相技術,可以把物體內部的情況顯示在照片上。
2.測定技術方面的套用,古生物年齡的測定,對生產過程中的材料厚度進行監視和控制等。
3.用放射性同位素作為示蹤劑。
4.用放射性同位素的能量,作為太空飛行器、人造心臟能源等。
5.利用放射性同位素的殺傷力,轉惡為善,治療癌症、滅菌消毒以及進行催化反應等。
放射性同位素的套用
放射性同位素的套用是沿著以下兩個方向展開的.
1.利用它的射線
放射性同位素也能放出α射線、β射線和r射線.α射線由於貫穿本領強,可以用來檢查金屬內部有沒有沙眼或裂紋,所用的設備叫α射線探傷儀.α射線 的電離作用很強,可以用來消除機器在運轉中因摩擦而產生的有害靜電.生物體內的DNA(脫氧核糖核酸)承載著物種的遺傳密碼,但是DNA在射線作用下可能 發生突變,所以通過射線照射可以使種子發生變異,培養出新的優良品種.射線輻射還能抑制農作物害蟲的生長,甚至直接消滅害蟲.人體內的癌細胞比正常細胞對 射線更敏感,因此用射線照射可以治療惡性腫瘤,這就是醫生們說的“放療”.
和天然放射性物質相比,人造放射性同位素的放射強度容易控制,還可以製成各種所需的形狀,特別是,它的半衰期比天然放射性物質短得多,因此放射性廢料容易處理.由於這些優點,在生產和科研中凡是用到射線時,用的都是人造放射性同位素,不用天然放射性物質.
2.作為示蹤原子
一种放射性同位素的原子核跟這種元素其他同位素的原子核具有相同數量的質子(只是中子的數量不同),因此核外電子的數量也相同,由此可知,一種元 素的各種同位素都有相同的化學性質.這樣,我們就可以用放射性同位素代替非放射性的同位素來製成各種化合物,這種化合物的原子跟通常的化合物一樣參與所有 化學反應,卻帶有“放射性標記”,用儀器可以探測出來.這種原子叫做示蹤原子.
棉花在結桃、開花的時候需要較多的磷肥,把磷肥噴在棉花葉子上也能吸收.但是,什麼時候的吸收率最高、磷能在作物體記憶體留多長時間、磷在作物體內 的分布情況等,用通常的方法很難研究.如果用磷的放射性同位素製成肥料噴在棉花葉面,然後每隔一定時間用探測器測量棉株各部位的放射性強度,上面的問題就很容易解決.
人體甲狀腺的工作需要.碘被吸收後會聚集在甲狀腺內.給人注射碘的放射性同位素碘131,然後定時用探測器測量甲狀腺及鄰近組織的放射強度,有助於診斷甲狀腺的器質性和功能性疾病.
近年來,有關生物大分子的結構及其功能的研究,幾乎都要藉助於放射性同位素.
三、放射性同位素的套用-同位素示蹤法
同位素示蹤法(isotopic tracer method)是利用放射性核素作為示蹤劑對研究對象進行標記的微量分析方法,示蹤實驗的創建者 是Hevesy。Hevesy於1923年首先用天然放射性212Pb研究鉛鹽在豆科植物內的分布和轉移。繼後Jolit和Curie於1934年發現了 人工放射性,以及其後生產方法的建立(加速器、反應堆等),為放射性同位素示蹤法的更快的發展和廣泛套用提供了基本的條件和有力的保障。
一、同位素示蹤法基本原理和特點
同位素示蹤所利用的放射性核素(或穩定性核素)及它們的化合物,與自然界存在的相應普通元素及其化合物之間的化學性質和生物學性質是相同的, 只是具有不同的核物理性質。因此,就可以用同位素作為一種標記,製成含有同位素的標記化合物(如標記食物,藥物和代謝物質等)代替相應的非標記化合物。利 用放射性同位素不斷地放出特徵射線的核物理性質,就可以用核探測器隨時追蹤它在體內或體外的位置、數量及其轉變等,穩定性同位素雖然不釋放射線,但可以利 用它與普通相應同位素的質量之差,通過質譜儀,氣相層析儀,核磁共振等質量分析儀器來測定。放射性同位素和穩定性同位素都可作為示蹤劑(tracer), 但是,穩定性同位素作為示蹤劑其靈敏度較低,可獲得的種類少,價格較昂貴,其套用範圍受到限制;而用放射性同位素作為示蹤劑不僅靈敏度,測量方法簡便易 行,能準確地定量,準確地定位及符合所研究對象的生理條件等特點:
1.靈敏度高
放射性示蹤法可測到10-14-10-18克水平,即可以從1015個非放射性原子中檢出一個放射性原子。它比目前較敏感的重量分析天平要敏感108-107倍,而迄今最準確的化學分析法很難測定到10-12克水平。
2.方法簡便
放射性測定不受其它非放射性物質的干擾,可以省略許多複雜的物質分離步驟,體內示蹤時,可以利用某些放射性同位素釋放出穿透力強的r射線,在 體外測量而獲得結果,這就大大簡化了實驗過程,做到非破壞性分析,隨著液體閃爍計數的發展,14C和3H等發射軟β射線的放射性同位素在醫學及生物學實驗 中得到越來越廣泛的套用。
3.定位定量準確
放射性同位素示蹤法能準確定量地測定代謝物質的轉移和轉變,與某些形態學技術相結合(如病理組織切片技術,電子顯微鏡技術等),可以確定放射性示蹤劑在組織器官中的定量分布,並且對組織器官的定位準確度可達細胞水平、亞細胞水平乃至分子水平。
4.符合生理條件
在放射性同位素實驗中,所引用的放射性標記化合物的化學量是極微量的,它對體內原有的相應物質的重量改變是微不足道的,體內生理過程仍保持正 常的平衡狀態,獲得的分析結果符合生理條件,更能反映客觀存在的事物本質。 放射性同位素示蹤法的優點如上所述,但也存在一些缺陷,如從事放射性同位素工 作的人員要受一定的專門訓練,要具備相應的安全防護措施和條件,在目前個別元素(如氧、氮等)還沒有合適的放射性同位素等等。在作示蹤實驗時,還必須注意 到示蹤劑的同位素效應和放射效應問題。所謂同位素效應是指放射性同位素(或是穩定性同位素)與相應的普通元素之間存在著化學性質上的微小差異所引起的個別 性質上的明顯區別,對於輕元素而言,同位素效應比較嚴重。因為同位素之間的質量判別是倍增的,如3H質量是1H的三倍,2H是1H的兩倍,當用氚水 (3H2O)作示蹤劑時,它在普通H2O中的含量不能過大,否則會使水的物理常數、對細胞膜的滲透及細胞質粘性等都會發生改變。但在一般的示蹤實驗中,由 同位素效應引起的誤差,常在實驗誤差內,可忽略不計。放射性同位素釋放的射線利於追蹤測量,但射線對生物體的作用達到一定劑量時,會改變機體的生理狀態, 這就是放射性同位素的輻射效應,因此放射性同位素的用量應小於安全劑量,嚴格控制在生物機體所能允許的範圍之內,以免實驗對象受輻射損傷,而得錯誤的結果。
示蹤實驗的設計原則
 設計一個放射性同位素的示蹤實驗應從實驗的目的性,實驗所具備的條件和對放射性的防護水平三方面著手考慮。原則上必須從兩個主要方面來設計放 射性示蹤實驗:一是必須尋求有效的、可重複的測定放射性強度的條件,二是必須選擇一個合適的比活度λqδ(單位是原子/時間/分子,dpm/mol或 ci/mol)。其中,λ=-dN’dt/N’為該處放射性原子核的衰變常數。q=N ’/n’,表示n’個該化學形式分子為N’個放射性原子所標記。δ =n’/n表示放射性標記的分子數n’與總分子數(標記的加未標記的)n之比。採用放射性同位素示蹤技術來實現所研究課題預期目的全部或一部分,一般須經 過實驗準備階段,實驗階段和放射性廢物處理三個步驟。
(一)實驗準備階段
1.示蹤劑的選擇
選定放射性示蹤劑的比活度λqδ的值必須足夠大,以保證實驗所需要的靈敏度,而又要儘可能地小,使得在該實驗條件下輻射自分解可忽略。一般情 形是根據實驗目的和實驗周期長短,來選擇具有合適的衰變方式,輻射類型和半衰期,且放射毒性低的放射性同位素。至今已確定的放射性核素包括天然的58種和 人工製造的約1300種,其中大多數不常能用作放射性示蹤劑。主要原因是製備困難、半衰期不合適及放射性不足以定量。在任何一種生產方法中,生產步驟很可 能包含或多或少的化學處理,因而示蹤實驗人員需要了解某個核素及其周圍的那些元素的化學性質,因為它們有可能成為此放射性同位素的雜質。
放射性同位素都衰變(經過或不經過中間狀態)到處於基態的子體核素,衰變時伴隨各種形式的能量輻射,如α、β-、β+、γ、X放射等。在選 擇示蹤劑時,示蹤實驗人員要仔細研究衰變綱圖,根據實驗條件和計數條件來決定那一種輻射,在衰變綱變內,代表核能級的兩條水平線之間和距離表示能量差,↑ 或↓表示能級同伴隨原子序數增或減少的能量,↓表示從激發態至基態的同質異能躍遷。一般要選擇最適宜的半衰期τ的放射性同位素,使τ足夠長,從而使衰變校 正有意義或乾脆不必作衰變校正,同時又要足夠短,能較安全地進行示蹤實驗,並使得放射性廢物容易處理,在實際工作中,使用的放射性同位素的半衰期應該與實 驗需要持續的時間t相適應,如對於某個實驗,t/τ=0.04時,應所選放射性同位素的衰變校正為3.5%;而t/τ=0.10時,應選放射性同位素的衰變校正為6.6%。t/τ=0.15時,應選用其衰變校正為10%。
在體外示蹤條件,一般選用半衰期較長而射線強度適中,既利於探測,又易於防護和保存的放射性示蹤劑。體內示蹤條件下,若實驗周期短,應選用 半衰期短,且能放出一定強度r射線物放射性同位素,若實驗周期長,如需要將動物活殺後對組織臟器分別測定的,則應選用半衰期較長放射性同位素。此外,根據 實驗目的來選用定位的或不定位的標記示蹤劑,例如研究胺基酸的脫羧反應,14C應標記在羧基上,只有這種定位標記的胺基酸,才能在脫羧後產生14CO2。 而有些實驗不要求特定位置標記,只須均勻標記即可。
選擇放射性示蹤劑還必須同時滿足高化學純度,高放射性核純度的要求。在示蹤劑製備期間、貯存期間以用試驗體系中所使用的溶劑、化學試劑、酶 等可能會產生化學雜質、放射化學雜質及輻射自分解引起的放射性雜質,這些雜質的存在,使得示蹤實驗中使用的示蹤劑不“純”,而或多或少影響實驗的結果,甚 至會導致錯誤結論。 氚標記的胸腺嘧啶核苷(3H-TdR)和尿嘧啶核苷(3H-UR)是兩種常用的示蹤劑,前者有效地結合到DNA中,後者則摻入到 RNA中,它們的輻射分解速度隨比較放射性的增高及保存時間的延長而增加,在不同溫度和不同溶液中的穩定性也不同。經保存八年的3H-TdR約有35%輻 射分解為3H-胸腺嘧啶,並導致二醇和水合物的形式,在實驗中這雜質會很快摻入細胞並與大分子(很可能是蛋白質)結合,而不是與DNA和RNA相結合,這 些雜質用DNA酶和RNA酶處理細胞都不除去。3H-TdR和3H-UR貯存在-20℃的冷凍溶液中輻射分離速度要比+2℃增加3-4倍,但低溫度(- 140℃)對貯存也有利,在允許對示蹤實驗人員在選擇保存放射性示蹤劑時會有所啟發。
2.放射性同位素測量方法的選擇
測量方法的選擇取決於射線種類,對於α射線通常可用硫化鋅晶體、電離室、核乳膠等方法探測;對能量高的β射線可用雲母窗計數管、塑膠閃爍晶體 及核乳膠測定,對於能量低的β射線可用液體閃爍計數器測量:對於γ射線則用G-M計數管,碘化鈉(鉈)閃爍晶體探測。目前大多數實驗室主要採用晶體閃爍計數法和液體閃爍計數法兩種測量方式。
同一台探測儀器對不同量的示蹤劑具有不同的最佳工作條件,在實驗準備階段要檢查探測器是否已調有所用示蹤同位素的工作條件,否則需要用一定量的示蹤劑作為放射源(或選用該同位素的標準源),把探測器的最佳工作條件調整好,並且要保證探測器性能處於穩定可靠的狀態。
探測最佳工作條件的選擇方法:一種是測“坪曲線”,另一種是找最好的品質因素。對於光電倍增管,在理論上不存在“坪”(plateau)。但隨著高壓的增 加,在一定範圍內,脈衝數變化較小,形成一段坡度較小的電壓脈衝曲線,通常也稱其為坪。測坪曲線的方法:固定放射源,根據其射線能量的大小,初選 一個廣 大器增益(放大倍數)和甄別器閾值。不斷地改變高壓(由低到高,均勻增加伏度),每改變一次高壓,都測定一次本底和放射源的計數率,最後作出高壓本底計數 率和高壓放射源計數曲線。用同樣的方法,作另一個甄別閾值(放大倍數不變)下的高壓計數率曲線,這樣反覆多作幾條曲線。必要時,還可固定甄別閾值,改變放 大倍數,求出高壓計數率曲線。應選擇“坪”比較平坦的曲線工作條件:甄別閾值和放大增益,作為正式測定時間的儀器工作條件,高壓值應選擇在該“坪”中點偏 向起始段一邊相應的高壓值。品質因素,又稱為優值,是指在一定條件下,要達到合適的統計數目所需要的時間是儀器的計數效率E和本底計數Nb的函式: 品質 因素F=E2/Nb它是衡量一台計數器性能的指標,儀器的品質因素F應該越大越好,品質因素F越大,表示測量效率E越高而本底Nb越小。如果某放射性示蹤 的標準源存在來源困難等問題的話,可以用相對品質因素f來代替。 相品質因素f=ns/nb 式中ns指某种放射性樣品的計數率。找最好品質因素的方法與 測坪曲線一樣,作出幾條高壓-F(或f)的關係曲線,在幾條曲線中選擇峰值最高的曲線。這根曲線的峰值所對應的條件:高壓,甄別閾,放大倍數等,就是該儀 器對被測同位素的最佳工作條件。最佳品質因素不一定恰好落在“坪”上,有的在“坪”附近,有的卻在“坪”的下端。著眼於把同位素的整個能譜峰都計下來的示 蹤實驗者主張取“坪”所對應的工作條件,而著眼於優值者,主張取最佳品質因素所對應的工作條件,也有人折衷。如果某儀器本底很低,光電倍增管噪音很低和能 譜分辯高,二者應該相差不大。同一台儀器的最佳工作條件,隨儀器的使用期延長而有所改變,不同的放射性同位素,其最佳工作條件不同。因此核探測儀器的最佳 工作條件具有專屬性,並且要經常通過選擇其不同時期的最佳工作條件。更不能不問被測同位素的種類,而千篇一律地使用同一個工作條件。
為了達到準確地計數,可以長時間一次計數,或短時間多次測量,兩者達到的標準誤基本相同,為避免外界因素的影響,在實際工作中,取短時間多 次測量較為合理適用。在測量樣品的放射性時,本底是一個重要影響因素。本底高,則標準誤和標準誤差都增大,尤其在樣品計數較低時,本底對標準誤和標準誤差 的影響就愈大,從而影響實驗結果的精度,而且為了達到一定的精度,勢別要增加樣品的測量時間。根據核衰變的統計規律,在實驗中如果樣品數量少,選擇tN= 1.4tb的比例(式中tN為樣品放射性測量時間,tb為本底測量時間)較為合理;如果樣品數量較多是一大批樣品,則延長本底測量時間tb,取tb的時間 均值,而tN則可相對短,這樣可節省時間,有利於縮短實驗周期。對於示蹤實驗設計來說,樣品中所含放射性強度的要求,是使其放射性計數率大於或等於本底計 數的10-20倍。
3.進行非放射性的模擬實驗,把實驗全過程預演一遍
同位素示蹤實驗要求準確、仔細,稍有疏忽或考慮不周就匆忙進行正式實驗,既容易導致實驗失敗,又會造成示蹤劑和其它實驗用品的浪費,還會增加 放射性廢物,增加實驗室本底水平,使實驗者接受不必要的輻射劑量,所以模擬實驗不僅可以檢查正式實驗中所用器材,藥品是否合格,又可以操作人員進行訓練, 以保證正式實驗能順利進行。
(二)正式實驗階段
1.選擇放射性同位素的劑量
同位素必須能經得起稀釋,使其最後樣品的放射性不能低於本底,一般來說放射性同位素在生物體內不是完全均勻地被稀釋,可能在某些器官、組織、細胞、某些分子中有選擇性地蓄積,蓄積的部分放射性就會很強,在這種情況下,應以相關部位對示蹤劑的蓄積率來考慮示蹤劑用量。在細胞培養,切片保溫,反 應等示蹤實驗中,應依據實驗目的、反應時間及反應體積的不同來考慮示蹤劑的用量,通常小於一個微居里或幾個微居里。 由於放射性同位素存在輻射效應,應該 根據使用的放射性核素的種類,將用量控制在最大允許劑量之內(maximun permissible dose),以免因劑量過大所造成的輻射效應,給 實驗帶來較大的誤差。
2.選擇示蹤劑給入途徑
整體示蹤實驗時,應根據實驗目的,選擇易吸收、易操作的給入途徑,一般給予的數量體積小,要求給予的劑量準確,防止可能的損失和不必要的污染。體外示蹤實驗時,應根據實驗設計的實驗步驟的某個環節加入一定劑量的示蹤到反應系統中去,力求操作準確,仔細。
3.放射性生物樣品的製備
根據實驗目的和示蹤劑的標記放射性同位素的性質製備放射性生物樣品,其中放射性同位素的性質是生物樣品製備形式的主要依據。若是釋放r射線的 示蹤劑,則樣品製備比較容易,只要定量地取出被測物放入井型NaI(TL)晶體內就能測定;若是釋放出硬β射線的示蹤劑,須將生物樣品製成厚度較薄的液 體,或將液體鋪樣後烘乾,也可灰化後鋪樣,放入塑膠晶體閃爍儀內測定,或用鐘罩型蓋一革計數管探測;若標記同位素僅釋放軟β射線,那么樣品應製成液體閃爍 樣品(詳見放射性測量”一章),在液體閃爍計數器內測量。不論採用何種測量方法,都應該對樣品作定量採集。對某些放射性分散的樣品,應當作適當濃集,如測 定組織內蛋白質的放射性,應對蛋白質作提取處理然後製備成相應的測量樣品。有些樣品需採用灰化法,但灰化法對易揮發的同位素或易揮發的組織樣品不合適。
4.放射性樣品的測量
測量方法分為絕對測量和相對測量。絕對測量是對樣品的實有放射性強度作測量,求出樣品中標記同位素的實際衰變率,在作絕對測量時,要糾正一些 因素對測量結果的影響,這些因素包括儀器探頭對於放射源的相對立體角、射線被探頭接收後被計數的幾率、反散射、 放射源的自吸收影響等等。而相對測量只是 在某個固定的探測儀器上作放射性強度的相對測量,不追求它的實際衰變率。在一般的示蹤實驗中,大多採用相對測量的方法,比較樣品間的差異。在相對測量時, 要注意保持樣品與探測器之間的幾何位置固定。幾何條件的影響是放射性測量中最重要的影響因素。當兩個放射性強度相同的樣品在測量中所置的幾何位置不一,或 樣品製備過程造成的幾何條件差異,其計數會相差很多,尤其當樣品與探頭之間距離較近時,兩者計數率相差會很大。但是當樣品與探頭之間相距較遠時,由於樣品 與探頭之間形成的相對立體角較小,所以兩者計數率的差異會顯著減小。在用紙片法測量3H標記物的放射性強度時,要注意紙片在閃爍瓶中的位置,一批樣品應該 一致,如果是將濾紙剪成圓狀作支持物,圓片的直徑最好與閃爍瓶底的直徑相等,保證濾紙在閃爍瓶內的位置固定。減小几何條件對放射性測量的影響可以從三方面 入手:⑴選擇探測窗大的探測器,如光電倍增管作探頭的探測器;⑵在樣品製備時,注意儘量將樣品做成點狀源,這樣當樣品的放射性強度較弱時,由於距離探測窗 較近而有可能造成的水平位移的影響就可以忽略;⑶無論樣品距離探測窗遠近,樣品都應置於探測窗的垂直軸線上,以減少樣品與探測窗之間的相對立體角。
(三)放射性去污染和放射性廢物處理
放射性實驗,無論是每次實驗或階段性實驗結束後,都可能有不同程度的放射性污染和放射性廢物的出現,因此,在實驗結束後,要作去污染處理和放射性廢物處理。必要時在實驗過程進行中,就要作除污染和清理放射性廢物的工作。
四、同位素示蹤法在生物化學和分子生物學中的套用
放射性同位素示蹤法在生物化學和分子生物學領域套用極為廣泛,它為揭示體內和細胞內理化過程的秘密,闡明生命活動的物質基礎起了極其重要的作 用。近幾年來,同位素示蹤技術在原基礎上又有許多新發展,如雙標記多標記技術,穩定性同位素示蹤技術,活化分析,電子顯微鏡技術,同位素技術與其它新技 術相結合等。由於這些技術的發展,使生物化學從靜態進入動態,從細胞水平進入分子水平,闡明了一系列重大問題,如遺傳密碼、細胞膜受體、RNA-DNA逆 轉錄等,使人類對生命基本現象的認識開闢了一條新的途徑。下面僅就同位素示蹤技術在生物化學和分子生物學中套用的幾個主要方面作一介紹。
1.物質代放謝的研究
體記憶體在著很多種物質,究竟它們之間是如何轉變的,如果在研究中套用適當的同位素標記物作示蹤劑分析這些物質中同位素含量的變化,就可以知道 它們之間相互轉變的關係,還能分辯出誰是前身物,誰是產物 ,分析同位素示蹤劑存在於物質分子的哪些原子上,可以進一步推斷各種物質之間的轉變機制。為了研究膽固醇的生物合成及其代謝,採用標記前身物的方法,揭示了膽固醇的生成途徑和步驟,實驗證明,凡是能在體內轉變為乙醯輔酶A的化合物,都可以作為生成 膽固醇的原料,從乙酸到膽固醇的全部生物合成過程,至少包括36步化學反應,在鯊烯與膽固醇之間,就有二十個中間物,膽固醇的生物合成途徑可簡化為:乙酸 →甲基二羥戊酸→膽固醇 又如在研究肝臟膽固醇的來源時,用放射性同位素標記物3H-膽固醇作靜脈注射的示蹤實驗說明,放射性大部分進入肝臟,再出現在糞 中,且甲狀腺素能加速這個過程,從而可說明肝臟是處理血漿膽固醇的主要器官,甲狀腺能降低血中膽固醇含量的機理,在於它對血漿膽固醇向肝臟轉移過程的加速作用。
2.物質轉化的研究
物質在機體內相互轉化的規律是生命活動中重要的本質內容,在過去的物質轉化研究中,一般都採用用離體酶學方法,但是離體酶學方法的研究結果,不一定能代表整體情況,同位素示蹤技術的套用,使有關物質轉化的實驗的周期大大縮短,而且在離體、整體、無細胞體系的情況下都可套用,操作簡化,測定靈敏 度提高,不僅能定性,還可作定量分析。 在闡明核糖苷酸向脫氧核糖核苷酸轉化的研究中,採用雙標記法,對產物作雙標記測量或經化學分離後分別測量其放射 性。如在鳥嘌呤核苷酸(GMP)的鹼基和核糖上分別都標記上14C,在離體系統中使之參入脫氧鳥嘌呤核苷酸(dGMP),然後將原標記物和產物(被雙標記 GMP摻入的dGMP)分別進行酸水解和層析分離後,測定它們各自的鹼基和戊糖的放射性,結果發現它們的兩部分的放射性比值基本相等,從而證明了產物 dGMP的戊糖就原標記物GMP的戊糖,而沒有別的來源,否則產物dGMP的鹼基和核糖的比值一定與原標記物GMP的兩部分比值有顯著差別。這個實驗說明 戊糖脫氧是在鹼基與戊糖不分記的情況下進行的,從而證明了脫氧核糖核苷酸是由核糖核苷酸直接轉化而來的,並不是核糖核苷酸先分解成核糖與鹼基,鹼基再重新接上脫氧杭核糖。無細胞的示蹤實驗可以分析物質在細胞內的轉化條件,例如以3H-dTTP為前身物作DNA摻入的示蹤實驗,按一定的實驗設計摻入後,測定 產物DNA的放射性,作為新合成的DNA的檢出指標。
3.動態平衡的研究
闡明生物體內物質處於不斷更新的動態平衡之中,是放射性同位素示蹤法對生命科學的重大貢獻之一,向體內引入適當的同位素標記物,在不同時間測 定物質中同位素含量的變化,就能了解該物質在體內的變動情況,定量計算出體內物質的代謝率,計算出物質的更新速度和更新時間等等。機體內的各種物質都在有 大小不同的代謝庫,代謝庫的大小可用同位素稀釋法求也。
4.生物樣品中微量物質的分析
在放射性同位素示蹤技術被套用之前,由於製備樣品時的丟失而造成回收率低以及測量靈敏度不高等問題,使得對機體正常功能起很重要作用的微量物 質不易被測定。近年來迅速發展、套用愈來愈廣泛的放射免疫分析(radioimmunoassay)技術是一種超微量的分析方法,它可測定的物質300多 種,其中激素類居多,包括類固醇激素,多肽類激素,非肽類激素,蛋白質物質,環核苷酸,酶,腫瘤相關的抗原,抗體以及病原體,微量藥物等其它物質。
5.最近鄰序列分析法(Nearest neighbour-sequence analysis method)
放射性同位素示蹤技術,是分子生物學研究中的重要手段之一,對蛋白質生物合成的研究,從DNA複製、RNA轉錄到蛋白質翻譯均起了很大的作用。最近鄰序列分析法套用同位素示蹤技術結合酶切理論和統計學理論,研究證實了DNA分子中鹼基排列規律,在體外作合成DNA的實驗:分四批進行,每批用 一種不同的32P標記脫氧核苷三磷酸,32P標記在戊糖5'C的位置上,在完全條件下合成後,用特定的酶打開5'C-P鍵,使原鹼基上通過戊糖5'C相連的32P移到最鄰近的另一單核苷酸的3'C上 。用最近鄰序列分析法首次提出了DNA複製與RNA轉錄的分子生物學基礎,從而建立了分子雜交技術,例如以噬體T2-DNA為模板製成[32P]RNA,取一定量T2-DNA和其它一些DNA加入此[32P]RNA中,經加熱使DNA雙鏈打開,並溫育,用密度 梯度離心或微孔膜分離出DNA-[32P]RNA複合體測其放射性,實驗結果只有菌體T2的DNA能與該[32P]RNA形成放射性複合體。從而證明了RNA與DNA模板的鹼基呈特殊配對的互補關係,用分子雜交技術還證實了從RNADNA逆轉錄現象。此外,放射性同位素示蹤技術對分子生物學的貢獻還表現在:⑴對蛋白質合成過程中三個連續階段,即肽鏈的起始、延伸和終止的研究;⑵核酸的分離和純化;⑶核酸末端核苷酸分析,序列測定;⑷核酸結構與功能的關係;⑸RNA中的遺傳信息如何通過核苷酸的排列順序向蛋質中胺基酸傳遞的研究等等。為了更好地套用放射性同位素示蹤技術,除了有賴於示蹤劑的高質量和核探測器的高靈敏度外,關鍵還在於有科學根據的構想和創造性的實驗設計以及各種新技術的綜合套用。

相關詞條

相關搜尋

熱門詞條

聯絡我們