pcm編碼

pcm編碼

PCM 脈衝編碼調製是Pulse Code Modulation的縮寫。脈衝編碼調製是數字通信的編碼方式之一。主要過程是將話音、圖像等模擬信號每隔一定時間進行取樣,使其離散化,同時將抽樣值按分層單位四捨五入取整量化,同時將抽樣值按一組二進制碼來表示抽樣脈衝的幅值。

編碼過程

模擬信號數位化必須經過三個過程,即抽樣、量化和編碼,以實現話音數位化的脈衝編碼調製(PCM,Pulse Coding Modulation)技術。

抽樣(Sampling)

抽樣是把模擬信號以其信號頻寬2倍以上的頻率提取樣值,變為在時間軸上離散的抽樣信號的過程。例如,話音信號頻寬被限制在0.3~3.4kHz內,用 8kHz的抽樣頻率(fs),就可獲得能取代原來連續話音信號的抽樣信號。對一個正弦信號進行抽樣獲得的抽樣信號是一個脈衝幅度調製(PAM)信號,如下圖對模擬正弦信號的抽樣所示。對抽樣信號進行檢波和平滑濾波,即可還原出原來的模擬信號。

量化(quantizing)

抽樣信號雖然是時間軸上離散的信號,但仍然是模擬信號,其樣值在一定的取值範圍內,可有無限多個值。顯然,對無限個樣值一一給出數字碼組來對應是不可能的。為了實現以數字碼表示樣值,必須採用“四捨五入”的方法把樣值分級“取整”,使一定取值範圍內的樣值由無限多個值變為有限個值。這一過程稱為量化。

量化後的抽樣信號與量化前的抽樣信號相比較,當然有所失真,且不再是模擬信號。這種量化失真在接收端還原模擬信號時表現為噪聲,並稱為量化噪聲。量化噪聲的大小取決於把樣值分級“取整”的方式,分的級數越多,即量化級差或間隔越小,量化噪聲也越小。

編碼(Coding)

量化後的抽樣信號在一定的取值範圍內僅有有限個可取的樣值,且信號正、負幅度分布的對稱性使正、負樣值的個數相等,正、負向的量化級對稱分布。若將有限個 量化樣值的絕對值從小到大依次排列,並對應地依次賦予一個十進制數字代碼(例如,賦予樣值0的十進制數字代碼為0),在碼前以“+”、“-”號為前綴,來 區分樣值的正、負,則量化後的抽樣信號就轉化為按抽樣時序排列的一串十進制數字碼流,即十進制數位訊號。簡單高效的數據系統是二進制碼系統,因此,應將十 進制數字代碼變換成二進制編碼。根據十進制數字代碼的總個數,可以確定所需二進制編碼的位數,即字長。這種把量化的抽樣信號變換成給定字長的二進制碼流的 過程稱為編碼。

抽樣說明

話音PCM的抽樣頻率為8kHz,每個量化樣值對應一個8位二進制碼,故話音數字編碼信號的速率為8bits×8kHz=64kb/s。量化噪聲隨量化級數的增多和級差的縮小而減小。量化級數增多即樣值個數增多,就要求更長的二進制編碼。因此,量化噪聲隨二進制編碼的位數增多而減小,即隨數字編碼信號的速率提高而減小。自然界中的聲音非常複雜,波形極其複雜,通常我們採用的是脈衝代碼調製編碼,即PCM編碼。PCM通過抽樣、量化、編碼三個步驟將連續變化的模擬信號轉換為數字編碼。

編碼實現

採樣率和採樣大小

單位:(位/bit)

聲音其實是一種能量波,因此也有頻率和振幅的特徵,頻率對應於時間軸線,振幅對應於電平軸線。波是無限光滑的,弦線可以看成由無數點組成,由於存儲空間是 相對有限的,數字編碼過程中,必須對弦線的點進行採樣。採樣的過程就是抽取某點的頻率值,很顯然,在一秒中內抽取的點越多,獲取得頻率信息更豐富,為了復 原波形,一次振動中,必須有2個點的採樣,人耳能夠感覺到的最高頻率為20kHz,因此要滿足人耳的聽覺要求,則需要至少每秒進行40k次採樣,用 40kHz表達,這個40kHz就是採樣率。我們常見的CD,採樣率為44.1kHz。光有頻率信息是不夠的,我們還必須獲得該頻率的能量值並量化,用於表示信號強度。量化電平數為2的整數次冪,我們常見的CD位16bit的採樣大小,即2的16次方。採樣大小相對採樣率更難理解,因為要顯得抽象點,舉個簡單例子:假設對一個波進行8次採樣,採樣點分別對應的能量值分別為A1-A8,但我們只使用2bit的採樣大小,結果我們只能保留A1-A8中4個點的 值而捨棄另外4個。如果我們進行3bit的採樣大小,則剛好記錄下8個點的所有信息。採樣率和採樣大小的值越大,記錄的波形更接近原始信號。

有損和無損

根據採樣率和採樣大小可以得知,相對自然界的信號,音頻編碼最多只能做到無限接近,至少目前的技術只能這樣了,相對自然界的信號,任何數字音頻編碼方案都 是有損的,因為無法完全還原。在計算機套用中,能夠達到最高保真水平的就是PCM編碼,被廣泛用於素材保存及音樂欣賞,CD、DVD以及我們常見的WAV 檔案中均有套用。因此,PCM約定俗成了無損編碼,因為PCM代表了數字音頻中最佳的保真水準,並不意味著PCM就能夠確保信號絕對保真,PCM也只能做 到最大程度的無限接近。我們而習慣性的把MP3列入有損音頻編碼範疇,是相對PCM編碼的。強調編碼的相對性的有損和無損,是為了告訴大家,要做到真正的無損是困難的,就像用數字去表達圓周率,不管精度多高,也只是無限接近,而不是真正等於圓周率的值。

使用音頻壓縮技術

要算一個PCM音頻流的碼率是一件很輕鬆的事情,採樣率值×採樣大小值×聲道數bps。一個採樣率為44.1KHz,採樣大小為16bit,雙聲道的 PCM編碼的WAV檔案,它的數據速率則為44.1K×16×2=1411.2Kb/s。我們常說128K的MP3,對應的WAV的參數,就是這個 1411.2Kb/s,這個參數也被稱為數據頻寬,它和ADSL中的頻寬是一個概念。將碼率除以8,就可以得到這個WAV的數據速率,即176.4KByte/s。這表示存儲一秒鐘採樣率為44.1KHz,採樣大小為16bit,雙聲道的PCM編碼的音頻信號,需要176.4KB的空間,1分鐘則約為10.34M,這對大部分用戶是不可接受的,尤其是喜歡在電腦上聽音樂的朋友,要降低磁碟占用,只有2種方法,降低採樣指標或者壓縮。降低指標是不可取的,因此專家們研發了各種壓縮方案。由於用途和針對的目標市場不一樣,各種音頻壓縮編碼所達到的音質和壓縮比都不一樣,在後面的文章中我們都會一一提到。有一點是可以肯定的,他們都壓縮過。

頻率與採樣率的關係

採樣率表示了每秒對原始信號採樣的次數,我們常見到的音頻檔案採樣率多為44.1KHz,這意味著什麼呢?假設我們有2段正弦波信號,分別為20Hz和 20KHz,長度均為一秒鐘,以對應我們能聽到的最低頻和最高頻,分別對這兩段信號進行40KHz的採樣,我們可以得到一個什麼樣的結果呢?結果是:20Hz的信號每次振動被採樣了40K/20=2000次,而20K的信號每次振動只有2次採樣。顯然,在相同的採樣率下,記錄低頻的信息遠比高頻的詳細。這也是為什麼有些音響發燒友指責CD有數碼聲不夠真實的原因,CD的44.1KHz採樣也無法保證高頻信號被較好記錄。要較好的記錄高頻信號,看來需要更高的採樣率,於是有些朋友在捕捉CD音軌的時候使用48KHz的採樣率,這是不可取的!這其實對音質沒有任何好處,對抓軌軟體來說,保持和CD提供的44.1KHz一樣的採樣率才是最佳音質的保證之一,而不是去提高它。較高的採樣率只有相對模擬信號的時候才有用,如果被採樣的信號是數字的,請不要去嘗試提高採樣率。

流特徵

隨著網路的發展,人們對線上收聽音樂提出了要求,因此也要求音頻檔案能夠一邊讀一邊播放,而不需要把這個檔案全部讀出後然後回放,這樣就可以做到不用下載 就可以實現收聽了。也可以做到一邊編碼一邊播放,正是這種特徵,可以實現線上的直播,架設自己的數字廣播電台成為了現實。

備註

在計算機套用中,能夠達到最高保真水平的就是PCM編碼,被廣泛用於素材保存及音樂欣賞,CD、DVD以及我們常見的 WAV檔案中均有套用。因此,PCM約定俗成了無損編碼,因為PCM代表了數字音頻中最佳的保真水準,並不意味著PCM就能夠確保信號絕對保真,PCM也只能做到最大程度的無限接近。要算一個PCM音頻流的碼率是一件很輕鬆的事情,採樣率值×採樣大小值×聲道數 bps。一個採樣率為44.1KHz,採樣大小為16bit,雙聲道的PCM編碼的WAV檔案,它的數據速率則為 44.1K×16×2 =1411.2 Kbps。我們常見的Audio CD就採用了PCM編碼,一張光碟的容量只能容納72分鐘的音樂信息。

相關詞條

相關搜尋

熱門詞條

聯絡我們