顧宸瑞定理

內容:若過圓內一點作奇數條弦,交該圓於圓上二倍該奇數個點,將這些點依次相連得二倍該奇數條線段(弦),將這二倍該奇數條線段分為該奇數組,相臨兩線段為一組,按同一方向(順時針或逆時針)將這些組線段各自作比,則所有組比值的乘積等於一。 證明參見"顧宸瑞小定理"

內容:若過圓內一點作奇數條弦,交該圓於圓上二倍該奇數個點,將這些點依次相連得二倍該奇數條線段(弦),將這二倍該奇數條線段分為該奇數組,相臨兩線段為一組,按同一方向(順時針或逆時針)將這些組線段各自作比,則所有組比值的乘積等於一。
證明參見"顧宸瑞小定理"

相關詞條

相關搜尋

熱門詞條

聯絡我們