定義
![特徵子空間](/img/e/acf/wZwpmL3EDO2YTO0QDM3UzM1UTM1QDN5MjM5ADMwAjMwUzL0AzLwUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![特徵子空間](/img/8/754/wZwpmL0ADO3gTNwAzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLwczLzYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![特徵子空間](/img/e/ed4/wZwpmL2UjNxkDN0IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzL4YzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![特徵子空間](/img/f/3be/wZwpmL1IDN4ETN4AzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLwczL3gzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![特徵子空間](/img/e/ed4/wZwpmL2UjNxkDN0IjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzL4YzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![特徵子空間](/img/2/fd5/wZwpmL2IDN5MzMxUTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1UzLxYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![特徵子空間](/img/4/5c7/wZwpmL0MjN4EjNzUzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1czL3YzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![特徵子空間](/img/b/da0/wZwpmLyczM0MTN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![特徵子空間](/img/8/754/wZwpmL0ADO3gTNwAzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLwczLzYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
方陣 的屬於特徵值 的特徵向量是齊次線性方程組 即 的非零解。此方程組 的解集 是 的子空間,稱為 的屬於特徵值 的 特徵子空間。
![特徵子空間](/img/1/2e5/wZwpmLyYDMzgzMwMzMzIDN0UTMyITNykTO0EDMwAjMwUzLzMzL1IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![特徵子空間](/img/2/0c1/wZwpmL2EDN2IzN2YjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL2UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![特徵子空間](/img/8/754/wZwpmL0ADO3gTNwAzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLwczLzYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
線性空間 上線性變換 的屬於特徵值 :的全體特徵向量與零向量構成的集合。
![特徵子空間](/img/7/a68/wZwpmL0cjNxMjMzMzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzczL3czLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![特徵子空間](/img/1/2e5/wZwpmLyYDMzgzMwMzMzIDN0UTMyITNykTO0EDMwAjMwUzLzMzL1IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![特徵子空間](/img/2/0c1/wZwpmL2EDN2IzN2YjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL2UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![特徵子空間](/img/8/754/wZwpmL0ADO3gTNwAzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLwczLzYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
是 的子空間,稱為 的屬於特徵值 的 特徵子空間。
![特徵子空間](/img/2/fd5/wZwpmL2IDN5MzMxUTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1UzLxYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
只要求出了特徵子空間的 的一組基,基向量的全體非零線性組合就是全體特徵向量。
![特徵子空間](/img/2/0c1/wZwpmL2EDN2IzN2YjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL2UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![特徵子空間](/img/b/da0/wZwpmLyczM0MTN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![特徵子空間](/img/7/fc0/wZwpmL2ADNyADO2kzNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5czLwgzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![特徵子空間](/img/2/99d/wZwpmL1cjN5QDN2EDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLxgzLzIzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![特徵子空間](/img/5/63f/wZwpmLzAzN0UjNwMzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzczLwQzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
同一線性變換 (或方陣 )的屬於不同特徵值 的特徵子空間之和是直和,屬於不同特徵值的特徵向量 線性無關。
對角化條件
![特徵子空間](/img/1/2e5/wZwpmLyYDMzgzMwMzMzIDN0UTMyITNykTO0EDMwAjMwUzLzMzL1IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![特徵子空間](/img/2/0c1/wZwpmL2EDN2IzN2YjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL2UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![特徵子空間](/img/b/da0/wZwpmLyczM0MTN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![特徵子空間](/img/2/0c1/wZwpmL2EDN2IzN2YjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL2UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
上線性變換 如果在某組基下的矩陣 是對角陣,就稱 可對角化。
![特徵子空間](/img/2/0c1/wZwpmL2EDN2IzN2YjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL2UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![特徵子空間](/img/7/135/wZwpmLyQjMzQTN2cjN1IDN0UTMyITNykTO0EDMwAjMwUzL3YzLyYzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![特徵子空間](/img/2/0c1/wZwpmL2EDN2IzN2YjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL2UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![特徵子空間](/img/7/135/wZwpmLyQjMzQTN2cjN1IDN0UTMyITNykTO0EDMwAjMwUzL3YzLyYzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![特徵子空間](/img/1/2e5/wZwpmLyYDMzgzMwMzMzIDN0UTMyITNykTO0EDMwAjMwUzLzMzL1IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
在基M下的矩陣是對角陣 M的向量全部是 的特徵向量 各特徵子空間的直和等於 。
![特徵子空間](/img/b/da0/wZwpmLyczM0MTN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![特徵子空間](/img/b/da0/wZwpmLyczM0MTN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
方陣 如果相似於對角陣,就稱 可對角化。
![特徵子空間](/img/b/da0/wZwpmLyczM0MTN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![特徵子空間](/img/e/6df/wZwpmLzQjM4gDN1IDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLygzLzQzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![特徵子空間](/img/2/bd9/wZwpmLzUzM4kDMyUTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1UzLwEzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![特徵子空間](/img/7/135/wZwpmLyQjMzQTN2cjN1IDN0UTMyITNykTO0EDMwAjMwUzL3YzLyYzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![特徵子空間](/img/2/c39/wZwpmL0gTMxEzM2QTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzLwAzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
是對角陣 P的各列是的特徵向量: 。
![特徵子空間](/img/2/0c1/wZwpmL2EDN2IzN2YjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL2UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![特徵子空間](/img/7/135/wZwpmLyQjMzQTN2cjN1IDN0UTMyITNykTO0EDMwAjMwUzL3YzLyYzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![特徵子空間](/img/2/0c1/wZwpmL2EDN2IzN2YjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL2UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
可對角化 在任何一組基下的矩陣可對角化。
幾何重數與代數重數
![特徵子空間](/img/7/fc0/wZwpmL2ADNyADO2kzNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5czLwgzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![特徵子空間](/img/8/754/wZwpmL0ADO3gTNwAzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLwczLzYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![特徵子空間](/img/b/3fb/wZwpmLzMzMzgDN0AzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLwczLzUzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![特徵子空間](/img/4/61b/wZwpmL3cDNzkDO5ITOwMzM1UTM1QDN5MjM5ADMwAjMwUzLykzL3czLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![特徵子空間](/img/8/754/wZwpmL0ADO3gTNwAzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLwczLzYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![特徵子空間](/img/2/fd5/wZwpmL2IDN5MzMxUTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1UzLxYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![特徵子空間](/img/2/e1b/wZwpmL3czMyQDO2QTMzEzM1UTM1QDN5MjM5ADMwAjMwUzL0EzL0czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![特徵子空間](/img/8/754/wZwpmL0ADO3gTNwAzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLwczLzYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![特徵子空間](/img/8/754/wZwpmL0ADO3gTNwAzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLwczLzYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
設 是方陣 A的全部不同的特徵值,每個特徵值 在特徵多項式 中的重數 稱為 的 代數重數,特徵子空間 的維數 稱為 幾何重數,每個特徵值 的幾何重數≥1且≤代數重數。
![特徵子空間](/img/b/da0/wZwpmLyczM0MTN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![特徵子空間](/img/7/135/wZwpmLyQjMzQTN2cjN1IDN0UTMyITNykTO0EDMwAjMwUzL3YzLyYzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
可對角化 所有的特徵值的幾何重數等於代數重數。
![特徵子空間](/img/b/da0/wZwpmLyczM0MTN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![特徵子空間](/img/b/da0/wZwpmLyczM0MTN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
特殊情形:如果n階方陣 有n個不同的特徵值,則每個特徵值的代數重數和幾何重數都等於1, 可對角化。
例題分析與解答
![特徵子空間](/img/3/b57/wZwpmLxMDM3gTMxYjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL1YzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![特徵子空間](/img/9/966/wZwpmL4MjM0YTO2YjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzLwIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![特徵子空間](/img/1/2e5/wZwpmLyYDMzgzMwMzMzIDN0UTMyITNykTO0EDMwAjMwUzLzMzL1IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![特徵子空間](/img/5/8cd/wZwpmL2UDN2YDO1czM2EzM1UTM1QDN5MjM5ADMwAjMwUzL3MzLygzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![特徵子空間](/img/f/992/wZwpmLyIjM2QTMyIjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzL4UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![特徵子空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![特徵子空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
設 的線性變換 將 中每個方陣 送到它的轉置 。求 的特徵值和特徵向量, 是否可對角化?
![特徵子空間](/img/5/e7c/wZwpmL0QTO5UTN2kTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5UzL3YzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![特徵子空間](/img/0/854/wZwpmLxUTN5EDOwkzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czL3gzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![特徵子空間](/img/0/c3c/wZwpmL4gDNzQjNzYjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2YzL4EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![特徵子空間](/img/1/2e5/wZwpmLyYDMzgzMwMzMzIDN0UTMyITNykTO0EDMwAjMwUzLzMzL1IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![特徵子空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![特徵子空間](/img/3/2f8/wZwpmLwIDNxAjMxMTMzEDN0UTMyITNykTO0EDMwAjMwUzLzEzLyIzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![特徵子空間](/img/8/6bb/wZwpmL0gTOxkjM5QjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0YzL3QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![特徵子空間](/img/4/354/wZwpmLyYjM1IjN4czN0YzM1UTM1QDN5MjM5ADMwAjMwUzL3czL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![特徵子空間](/img/a/aa4/wZwpmL2UzNyYTMzQTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzL1EzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![特徵子空間](/img/b/adf/wZwpmLxcjN1UjN2kzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czLwEzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![特徵子空間](/img/8/cec/wZwpmL0MDN2ETMzgTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4UzL3YzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![特徵子空間](/img/8/052/wZwpmL3EjM1kzM5EDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLxgzL1IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
解 對任意 有 ,可見 是 上的恆等變換, 的屬於每個特徵值 的特徵向量 滿足 從而 ,將 代入得 ,從而 。
![特徵子空間](/img/5/8cd/wZwpmL2UDN2YDO1czM2EzM1UTM1QDN5MjM5ADMwAjMwUzL3MzLygzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![特徵子空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![特徵子空間](/img/7/135/wZwpmLyQjMzQTN2cjN1IDN0UTMyITNykTO0EDMwAjMwUzL3YzLyYzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![特徵子空間](/img/8/6bb/wZwpmL0gTOxkjM5QjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0YzL3QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![特徵子空間](/img/b/fa2/wZwpmL1ITN3kjN2QTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzL3gzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
是 的屬於特徵值1的特徵向量 且 是非零對稱方陣。
![特徵子空間](/img/5/8cd/wZwpmL2UDN2YDO1czM2EzM1UTM1QDN5MjM5ADMwAjMwUzL3MzLygzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![特徵子空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![特徵子空間](/img/b/e2b/wZwpmLygDM0YDOwMjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzYzLzczLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![特徵子空間](/img/2/f95/wZwpmLxUzNyEDOzUjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL1YzL0EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
是 的屬於特徵值-1的特徵向量 且 是非零斜對稱方陣。
![特徵子空間](/img/1/2e5/wZwpmLyYDMzgzMwMzMzIDN0UTMyITNykTO0EDMwAjMwUzLzMzL1IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
存在一組由特徵向量組成的基:
![特徵子空間](/img/b/9a9/wZwpmL4QzN2MTMxIDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLygzLxUzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![特徵子空間](/img/f/bc5/wZwpmLwEzNzczM0UTM5IDN0UTMyITNykTO0EDMwAjMwUzL1EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![特徵子空間](/img/8/f54/wZwpmLycjMxYzNzQTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzLyYzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
在這組基下的矩陣是對角陣 。