應變張量

應變張量

應變張量:是應變狀態的數學表示。數學上應變為二階張量,二維平面中需四個分量,三維空間中則需九個分量(三個線應變分量和六個剪應變分量)予以確定。

應變張量

正文

連續介質力學中度量變形的幾何量。在直角坐標系中,未變形物體和已變形物體中線元的平方分別為:

其中

 

分別稱為柯西應變張量和格林應變張量或右柯西-格林張量。 這兩個張量都是對稱正定的。另外,

分別稱為芬格應變張量或左柯西-格林張量和皮奧拉應變張量。連續介質中兩相鄰粒子的ds2-dS2可以用來作為變形的度量。可以寫作:

式中

應變張量

應變張量

分別稱為拉格朗日有限應變張量或格林有限應變張量、歐拉有限應變張量或阿爾曼西有限應變張量。δ和δ為克羅內克符號。若用位移表示,則得有限變形理論中常用的拉格朗日應變張量和歐拉應變張量:

式中UK和uk分別為物質坐標中的和空間坐標中的位移分量。若位移很小,則得無限小變形理論中的拉格朗日和歐拉應變張量:V

 

配圖

相關連線

相關詞條

相關搜尋

熱門詞條

聯絡我們