基本介紹
![弧長函式](/img/2/3aa/wZwpmL3AzN1QDN2cjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL3YzLwAzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
定義 設函式f(x)在區間(a,b)上具有連續導數,曲線y=f(x)在每點處都存在切線,如圖1所示。在曲線y=f(x)上取定一點作為計算弧長的起點,另外任取一點N(x,y),則從點M到點1N的有向弧長(和弧的長度不同)記為s,它是x的函式,稱為 弧長 函式,記為
![弧長函式](/img/4/38f/wZwpmLxIzM0UzMyMDOwcTN1UTM1QDN5MjM5ADMwAjMwUzLzgzL2czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![弧長函式](/img/5/36d/wZwpmL2gTM1gzMyMDM0kDN1UTM1QDN5MjM5ADMwAjMwUzLzAzL2czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![弧長函式](/img/9/d6b/wZwpmL3ITM1kDNzkDOzkDN1UTM1QDN5MjM5ADMwAjMwUzL5gzLwQzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
我們規定:當點N在點M的右側()時,s為正值;當點N在點M的左側()時,s為負值。所以弧長函式是x的單調增加函式 。
![圖1](/img/0/3be/wZwpmL4AjMwMzNzATMxcTN1UTM1QDN5MjM5ADMwAjMwUzLwEzLxUzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
弧長函式的導數和微分
定理1 設函式y=f(x)在[a,b]上連續,在(a,b)內具有一階連續導數,則弧長函式s(x)可微,且
![弧長函式](/img/e/1d2/wZwpmLzgDMyUTN0UDOwcTN1UTM1QDN5MjM5ADMwAjMwUzL1gzLxUzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
則(1)式稱為弧微分公式 。
證明如圖1所示,當橫坐標由x變為x+△x時,它在曲線上對應的點為P,對應於x的增量△x,弧長函式的增量為
![弧長函式](/img/8/2e9/wZwpmL2IDM5UzM5QDMxcTN1UTM1QDN5MjM5ADMwAjMwUzL0AzL3MzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![弧長函式](/img/e/d59/wZwpmL3IDO0gjMyUDOwcTN1UTM1QDN5MjM5ADMwAjMwUzL1gzLyczLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![弧長函式](/img/7/9ef/wZwpmL2UTO5gDN1UDOwcTN1UTM1QDN5MjM5ADMwAjMwUzL1gzLwYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
當P與N充分接近時,弧的長度△s近似地可以用其所對應的弦NP的長度來代替,如圖1所示,且
![弧長函式](/img/4/c29/wZwpmLzczN3YzNzUDMxcTN1UTM1QDN5MjM5ADMwAjMwUzL1AzL0EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
因為
![弧長函式](/img/9/9f3/wZwpmL3ADNzkDM3kTOwcTN1UTM1QDN5MjM5ADMwAjMwUzL5kzL4UzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
或
![弧長函式](/img/4/68d/wZwpmLzAzN3ATNzYTMxcTN1UTM1QDN5MjM5ADMwAjMwUzL2EzL4gzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![弧長函式](/img/8/92b/wZwpmLwIjNwQTM5QjM2EzM1UTM1QDN5MjM5ADMwAjMwUzL0IzLyMzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
當時,上式兩端取極限可得
![弧長函式](/img/a/8c8/wZwpmL3ETOyQzNyYTMxcTN1UTM1QDN5MjM5ADMwAjMwUzL2EzLyEzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
因為s(x)是x的單調增加函式,所以取
![弧長函式](/img/2/aad/wZwpmL0YDO2YTNzcTOwcTN1UTM1QDN5MjM5ADMwAjMwUzL3kzL2YzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
由此可得弧長微分公式
![弧長函式](/img/b/a6d/wZwpmLxIDOyIDOzUDOwcTN1UTM1QDN5MjM5ADMwAjMwUzL1gzL0czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
如果曲線的方程是由參數方程
![弧長函式](/img/3/a94/wZwpmL1QDNwgTM1QTOwcTN1UTM1QDN5MjM5ADMwAjMwUzL0kzL4MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
或極坐標方程
![弧長函式](/img/2/acf/wZwpmL3czN1ITO4IDOwcTN1UTM1QDN5MjM5ADMwAjMwUzLygzL1czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![弧長函式](/img/a/4c0/wZwpmLyITNxcTMycTOwcTN1UTM1QDN5MjM5ADMwAjMwUzL3kzL4EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
給出,且均有連續導數,則分別有弧長微分公式
![弧長函式](/img/9/495/wZwpmLwMzMxYDO1ETMxcTN1UTM1QDN5MjM5ADMwAjMwUzLxEzLyIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
和
![弧長函式](/img/6/aac/wZwpmLyEDOwQTN4ETOwcTN1UTM1QDN5MjM5ADMwAjMwUzLxkzL4UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![弧長函式](/img/c/aeb/wZwpmL3ATO2MTO5ADMxcTN1UTM1QDN5MjM5ADMwAjMwUzLwAzL2UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
(2)式是顯然的,在極坐標的情況下,所以
![弧長函式](/img/6/aac/wZwpmLyEDOwQTN4ETOwcTN1UTM1QDN5MjM5ADMwAjMwUzLxkzL4UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)