概述
巴拿赫不動點定理,又稱為壓縮映射定理或壓縮映射原理,是度量空間理論的一個重要工具;它保證了度量空間的一定自映射的不動點的存在性和唯一性,並提供了求出這些不動點的構造性方法。這個定理是以斯特凡·巴拿赫(1892–1945)命名的,他在1922年提出了這個定理。定理
設(X,d)為非空的完備度量空間。設T:X→X為X上的一個壓縮映射,也就是說,存在一個非負的實數q<1,使得對於所有X內的x和y,都有:![公式](/img/6/ac5/ml2ZuM3XxUTM1AzM3gjM3YzM1ITM1AjNzETNwADMwAzMxAzL4IzLyEzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
那么映射T在X內有且只有一個不動點x*(這就是說,Tx*=x*)。更進一步,這個不動點可以用以下的方法來求出:從X內的任意一個元素x0開始,並定義一個疊代序列xn=Txn-1,對於n=1,2,3,……。這個序列收斂,且極限為x*。以下的不等式描述了收斂的速率:
![公式](/img/0/798/ml2ZuM3XzYzN3gDN5gjM3YzM1ITM1AjNzETNwADMwAzMxAzL4IzL0IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
等價地:
![公式](/img/c/371/ml2ZuM3X2QjMyADMxkjM3YzM1ITM1AjNzETNwADMwAzMxAzL5IzLxQzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
且
![公式](/img/a/831/ml2ZuM3X2QDO3gTNykjM3YzM1ITM1AjNzETNwADMwAzMxAzL5IzLxEzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
滿足以上不等式的最小的q有時稱為利普希茨常數。
注意對於所有不同的x和y都有d(Tx,Ty)<d(x,y)的要求,一般來說是不足以保證不動點的存在的,例如映射T:[1,∞)→[1,∞),T(x)=x+1/x,就沒有不動點。但是,如果空間X是緊的,則這個較弱的假設也能保證不動點的存在。
當實際套用這個定理時,最艱難的部分通常是恰當地定義X,使得T實際上把元素從X映射到X,也就是說,Tx總是X的一個元素。
證明
選擇任何![公式](/img/6/a11/ml2ZuM3XyMjNxQjMzAzM3YzM1ITM1AjNzETNwADMwAzMxAzLwMzL1YzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![公式](/img/3/07e/ml2ZuM3X2ETOzkjNxAzM3YzM1ITM1AjNzETNwADMwAzMxAzLwMzLxYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![公式](/img/c/5a3/ml2ZuM3X0IDN4gTM3AzM3YzM1ITM1AjNzETNwADMwAzMxAzLwMzL2MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![公式](/img/3/07e/ml2ZuM3X2ETOzkjNxAzM3YzM1ITM1AjNzETNwADMwAzMxAzLwMzLxYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![公式](/img/5/cb2/ml2ZuM3X2MTO4EDO4AzM3YzM1ITM1AjNzETNwADMwAzMxAzLwMzL0YzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
我們用數學歸納法來證明。對於n=1的情況,命題是成立的,這是因為:
![公式](/img/0/6fd/ml2ZuM3XyEDOzgjN1UzM3YzM1ITM1AjNzETNwADMwAzMxAzL1MzLxUzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
假設命題對於某個
![公式](/img/c/0f1/ml2ZuM3XxYDN5kzM5UzM3YzM1ITM1AjNzETNwADMwAzMxAzL1MzLwczLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![公式](/img/2/93d/ml2ZuM3XwUzMzYjNxYzM3YzM1ITM1AjNzETNwADMwAzMxAzL2MzL3AzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![公式](/img/f/7e5/ml2ZuM3XycTM5kzNzYzM3YzM1ITM1AjNzETNwADMwAzMxAzL2MzLxUzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![公式](/img/c/823/ml2ZuM3X2YzMxQTM3YzM3YzM1ITM1AjNzETNwADMwAzMxAzL2MzLyEzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![公式](/img/3/533/ml2ZuM3X1gTMxMTO5YzM3YzM1ITM1AjNzETNwADMwAzMxAzL2MzLzUzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![公式](/img/7/d21/ml2ZuM3X1MTO2YTN4YzM3YzM1ITM1AjNzETNwADMwAzMxAzL2MzLxgzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![公式](/img/c/f0e/ml2ZuM3X4AzN4EjM1czM3YzM1ITM1AjNzETNwADMwAzMxAzL3MzL2IzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
從第三行到第四行,我們用到了歸納假設。根據數學歸納法原理,對於所有的
![公式](/img/c/21d/ml2ZuM3XxMTMzITM4czM3YzM1ITM1AjNzETNwADMwAzMxAzL3MzL2UzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
設
![公式](/img/9/9ac/ml2ZuM3XxYDNzETO5czM3YzM1ITM1AjNzETNwADMwAzMxAzL3MzL2gzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![公式](/img/9/9ac/ml2ZuM3XxYDNzETO5czM3YzM1ITM1AjNzETNwADMwAzMxAzL3MzL2gzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![公式](/img/7/2a9/ml2ZuM3X1EjM2YzNygzM3YzM1ITM1AjNzETNwADMwAzMxAzL4MzL0czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![公式](/img/9/589/ml2ZuM3XwUTNxEDM1gzM3YzM1ITM1AjNzETNwADMwAzMxAzL4MzL4czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
利用以上的命題,我們便有對於任何
![公式](/img/7/c9c/ml2ZuM3XxQTNycjM3gzM3YzM1ITM1AjNzETNwADMwAzMxAzL4MzLyYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![公式](/img/a/b83/ml2ZuM3X4YTNyIzN4gzM3YzM1ITM1AjNzETNwADMwAzMxAzL4MzLyUzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![公式](/img/8/e18/ml2ZuM3XwITMyUDM0kzM3YzM1ITM1AjNzETNwADMwAzMxAzL5MzLxEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![公式](/img/7/d2c/ml2ZuM3X1gDN2ADN1kzM3YzM1ITM1AjNzETNwADMwAzMxAzL5MzL4MzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![公式](/img/6/978/ml2ZuM3X1MjNzgTO3kzM3YzM1ITM1AjNzETNwADMwAzMxAzL5MzL2UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![公式](/img/2/f82/ml2ZuM3XycjMycjMwADN3YzM1ITM1AjNzETNwADMwAzMxAzLwQzL3QzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![公式](/img/b/57a/ml2ZuM3XwgDMycTN0ADN3YzM1ITM1AjNzETNwADMwAzMxAzLwQzLwYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![公式](/img/a/a97/ml2ZuM3XxcTO5QDO2ADN3YzM1ITM1AjNzETNwADMwAzMxAzLwQzL0EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![公式](/img/1/ef3/ml2ZuM3XxADO2cDOwEDN3YzM1ITM1AjNzETNwADMwAzMxAzLxQzL4gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![公式](/img/7/c7e/ml2ZuM3X2ADO3kDO4ADN3YzM1ITM1AjNzETNwADMwAzMxAzLwQzL3IzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![公式](/img/1/ef3/ml2ZuM3XxADO2cDOwEDN3YzM1ITM1AjNzETNwADMwAzMxAzLxQzL4gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![公式](/img/f/73d/ml2ZuM3XzMjMyUDOzEDN3YzM1ITM1AjNzETNwADMwAzMxAzLxQzLxUzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
第一行的不等式可以從三角不等式推出;第四行的級數是一個幾何級數,其中
![公式](/img/5/7d5/ml2ZuM3XzUTN4IzN5EDN3YzM1ITM1AjNzETNwADMwAzMxAzLxQzL1EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![公式](/img/4/ff8/ml2ZuM3X2ITM2cDN2IDN3YzM1ITM1AjNzETNwADMwAzMxAzLyQzLwQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![公式](/img/f/59c/ml2ZuM3X4ADNxAzN3IDN3YzM1ITM1AjNzETNwADMwAzMxAzLyQzLwMzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![公式](/img/3/c9b/ml2ZuM3XzADO2EzNxMDN3YzM1ITM1AjNzETNwADMwAzMxAzLzQzL2EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![公式](/img/7/804/ml2ZuM3XxgDO4kDO0MDN3YzM1ITM1AjNzETNwADMwAzMxAzLzQzLxEzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![公式](/img/1/8b9/ml2ZuM3XwMzN5QDO3MDN3YzM1ITM1AjNzETNwADMwAzMxAzLzQzLyYzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![公式](/img/7/804/ml2ZuM3XxgDO4kDO0MDN3YzM1ITM1AjNzETNwADMwAzMxAzLzQzLxEzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
為了證明第一個命題,我們注意到對於任何的
![公式](/img/7/c9c/ml2ZuM3XxQTNycjM3gzM3YzM1ITM1AjNzETNwADMwAzMxAzL4MzLyYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![公式](/img/2/800/ml2ZuM3X3gjMxQjMxUDN3YzM1ITM1AjNzETNwADMwAzMxAzL1QzL3IzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
由於當
![公式](/img/3/b5b/ml2ZuM3XwgjM2MDOyUDN3YzM1ITM1AjNzETNwADMwAzMxAzL1QzLxQzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![公式](/img/0/61c/ml2ZuM3X0gTMyYTM0UDN3YzM1ITM1AjNzETNwADMwAzMxAzL1QzL0QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![公式](/img/8/8d5/ml2ZuM3XzUDM0UzN1UDN3YzM1ITM1AjNzETNwADMwAzMxAzL1QzLzQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![公式](/img/3/b5b/ml2ZuM3XwgjM2MDOyUDN3YzM1ITM1AjNzETNwADMwAzMxAzL1QzLxQzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![公式](/img/b/047/ml2ZuM3X3ADNwATM1YDN3YzM1ITM1AjNzETNwADMwAzMxAzL2QzLzYzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![公式](/img/3/b5b/ml2ZuM3XwgjM2MDOyUDN3YzM1ITM1AjNzETNwADMwAzMxAzL1QzLxQzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![公式](/img/a/05e/ml2ZuM3X4MDM3UTN3YDN3YzM1ITM1AjNzETNwADMwAzMxAzL2QzLzAzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![公式](/img/0/132/ml2ZuM3XxIzN2UjMwcDN3YzM1ITM1AjNzETNwADMwAzMxAzL3QzLxAzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
為了證明第二個命題,我們假設y也滿足Ty=y。那么:
![公式](/img/7/eb1/ml2ZuM3X2YDN5gDO1cDN3YzM1ITM1AjNzETNwADMwAzMxAzL3QzL3MzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
由於
![公式](/img/5/7d5/ml2ZuM3XzUTN4IzN5EDN3YzM1ITM1AjNzETNwADMwAzMxAzLxQzL1EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![公式](/img/0/789/ml2ZuM3X2MDNwADO4cDN3YzM1ITM1AjNzETNwADMwAzMxAzL3QzLwEzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![公式](/img/1/aa7/ml2ZuM3XwcjM3gDN2kDN3YzM1ITM1AjNzETNwADMwAzMxAzL5QzL4EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![公式](/img/0/9ba/ml2ZuM3X2MTM2UTO4kDN3YzM1ITM1AjNzETNwADMwAzMxAzL5QzL0gzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
逆定理
巴拿赫不動點定理有許多逆定理,以下的一個是CzesławBessaga在1959年發現的:設f:X→X為一個抽象集合的映射,使得每一個疊代
![符號](/img/2/974/ml2ZuM3XxgzM2QDM5ETN3YzM1ITM1AjNzETNwADMwAzMxAzLxUzLwYzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)