基本介紹
![對角化](/img/0/1a2/wZwpmLwYDOwEjM0gTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL4EzL3EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/4/514/wZwpmL4cDN2UDN5MzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzczL1UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/b/da0/wZwpmLyczM0MTN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![對角化](/img/3/015/wZwpmL4EDNyUTM2IDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLygzL2MzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![對角化](/img/b/da0/wZwpmLyczM0MTN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![對角化](/img/0/1a2/wZwpmLwYDOwEjM0gTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL4EzL3EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
對角矩陣是指只有主對角線上含有非零元素的矩陣,即,已知一個n×n矩陣 ,如果對於 ,則該矩陣為 對角矩陣。如果存在一個矩陣 ,使 的結果為對角矩陣,則稱矩陣 將矩陣 對角化。對於一個矩陣來說,不一定存在將其對角化的矩陣,但是任意一個n×n矩陣如果存在n個線性不相關的特徵向量,則該矩陣可被對角化 。
相關定理
![對角化](/img/0/1a2/wZwpmLwYDOwEjM0gTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL4EzL3EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/7/279/wZwpmLzYjMxAzN1kDOxMzM1UTM1QDN5MjM5ADMwAjMwUzL5gzLzEzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![對角化](/img/1/b5f/wZwpmLwEDNyITN1gTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4UzL4UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/b/da0/wZwpmLyczM0MTN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
定理1 令 為n×n矩陣,其特徵值為 ,特徵向量為 ,形成線性無關集合,以每個特徵向量為列構成矩陣 ,如下所示。
![對角化](/img/e/a69/wZwpmLwADNxMDMykjN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5YzLzgzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![對角化](/img/b/da0/wZwpmLyczM0MTN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![對角化](/img/0/1a2/wZwpmLwYDOwEjM0gTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL4EzL3EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/3/015/wZwpmL4EDNyUTM2IDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLygzL2MzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![對角化](/img/0/1a2/wZwpmLwYDOwEjM0gTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL4EzL3EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
矩陣 可以將矩陣 對角化,乘積矩陣 的主對角元素是矩陣 的特徵值:
![對角化](/img/4/87c/wZwpmL2QzNygTO3kzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5czLyYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![對角化](/img/b/da0/wZwpmLyczM0MTN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![對角化](/img/3/015/wZwpmL4EDNyUTM2IDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLygzL2MzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![對角化](/img/b/da0/wZwpmLyczM0MTN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![對角化](/img/0/1a2/wZwpmLwYDOwEjM0gTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL4EzL3EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/3/015/wZwpmL4EDNyUTM2IDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLygzL2MzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![對角化](/img/0/1a2/wZwpmLwYDOwEjM0gTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL4EzL3EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
反之,如果存在可逆矩陣 ,使 為對角矩陣,則矩陣 的列等於矩陣 的特徵向量, 的主對角元素為矩陣 的特徵值 。
![對角化](/img/0/439/wZwpmL1czM2gTNxETN0YzM1UTM1QDN5MjM5ADMwAjMwUzLxUzLwYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![對角化](/img/b/da0/wZwpmLyczM0MTN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![對角化](/img/1/e83/wZwpmLyADN2ETN5QTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzLyAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/0/439/wZwpmL1czM2gTNxETN0YzM1UTM1QDN5MjM5ADMwAjMwUzLxUzLwYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![對角化](/img/8/54d/wZwpmL3QjMyQDN4QTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzLzAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/1/e83/wZwpmLyADN2ETN5QTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzLyAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/d/99c/wZwpmLxEzN1ADM1MDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLzgzLwIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![對角化](/img/0/439/wZwpmL1czM2gTNxETN0YzM1UTM1QDN5MjM5ADMwAjMwUzLxUzLwYzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
證明:首先計算矩陣乘積 。由於矩陣 的第j列對應特徵向量 ,則的第j列等於 。由於為特徵向量,則,矩陣乘積可寫為
![對角化](/img/3/0f6/wZwpmLzczN5gTM5kTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL5UzL2AzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/4/76a/wZwpmL0gTO4kTOyAzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLwczLyIzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![對角化](/img/a/0a2/wZwpmL3IjM0kzN4EjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLxYzLzIzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![對角化](/img/1/e83/wZwpmLyADN2ETN5QTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzLyAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/b/da0/wZwpmLyczM0MTN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![對角化](/img/3/015/wZwpmL4EDNyUTM2IDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLygzL2MzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
由於特徵向量線性無關,矩陣可逆,的表達式可寫為
![對角化](/img/8/fb6/wZwpmL0MTM0QjN5gTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4UzLwAzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![對角化](/img/0/1a2/wZwpmLwYDOwEjM0gTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL4EzL3EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/b/da0/wZwpmLyczM0MTN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![對角化](/img/0/1a2/wZwpmLwYDOwEjM0gTM2EzM1UTM1QDN5MjM5ADMwAjMwUzL4EzL3EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/6/5f4/wZwpmL2ADM1ATO2QzM2EzM1UTM1QDN5MjM5ADMwAjMwUzL0MzL4czLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![對角化](/img/6/5f1/wZwpmLwQTN3UzMyIjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLyYzL3AzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/b/da0/wZwpmLyczM0MTN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
反之,也可證明,可將矩陣對角化的可逆矩陣 必定由的特徵向量組成。假設為n×n對角矩陣,且,其中 為n×n矩陣,有
![對角化](/img/0/c8d/wZwpmL0QzM2cDM4gTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL4UzL3czLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![對角化](/img/1/e83/wZwpmLyADN2ETN5QTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzLyAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/b/da0/wZwpmLyczM0MTN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![對角化](/img/8/395/wZwpmL1MTOxATNxQzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0czL1UzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
令表示矩陣 的第j列,為矩陣 D的主對角線上的元素,則矩陣乘積 AD的表達式如下:
![對角化](/img/6/e8f/wZwpmL4MTOwEjN0ADO0YzM1UTM1QDN5MjM5ADMwAjMwUzLwgzLxEzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![對角化](/img/6/54d/wZwpmL2UDNyAjN0MDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLzgzL3czLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
另,矩陣乘積 MA如下:
![對角化](/img/f/247/wZwpmL1YDO0UTM4QzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0czL0czLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![對角化](/img/3/a8e/wZwpmL4ETOxADNwMjN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzYzL3QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![對角化](/img/1/e83/wZwpmLyADN2ETN5QTN0YzM1UTM1QDN5MjM5ADMwAjMwUzL0UzLyAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/b/5a9/wZwpmL4ATM3QDNwMzN0YzM1UTM1QDN5MjM5ADMwAjMwUzLzczL4IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
令 AD的第j列等於 MA的第j列,則,因此是與特徵值對應的矩陣 M的特徵向量。 證畢。
![對角化](/img/b/da0/wZwpmLyczM0MTN0MTOwMzM1UTM1QDN5MjM5ADMwAjMwUzLzkzL0gzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![對角化](/img/0/8d2/wZwpmL3YDNwkzMyYzN0YzM1UTM1QDN5MjM5ADMwAjMwUzL2czL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
由於對稱矩陣 M的特徵向量是正交的,則以 M的單位長度的特徵向量為列構成的矩陣 是正交矩陣,因此。由對稱矩陣 M的特徵值組成的矩陣 D的表達式如下 :
![對角化](/img/c/b15/wZwpmL3QjN1EDM1MDO0YzM1UTM1QDN5MjM5ADMwAjMwUzLzgzL3EzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
對角矩陣
定義
對角矩陣(diagonal matrix)是一個主對角線之外的元素皆為0的矩陣。對角線上的元素可以為0或其他值。對角線上元素相等的對角矩陣稱為數量矩陣;對角線上元素全為1的對角矩陣稱為單位矩陣。
(1)對角矩陣形如:
![對角化](/img/6/2db/wZwpmLxMDOygzN2QTOwMzM1UTM1QDN5MjM5ADMwAjMwUzL0kzL3YzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![對角化](/img/4/b32/wZwpmLygDM2AjM1MzMxMzM1UTM1QDN5MjM5ADMwAjMwUzLzMzL1MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
(2)對角矩陣可以記作:。
![對角化](/img/c/e8f/wZwpmL4EDN0QTO1EzNxMzM1UTM1QDN5MjM5ADMwAjMwUzLxczL0IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![對角化](/img/3/fcf/wZwpmL4EDN3cTM2AzNwMzM1UTM1QDN5MjM5ADMwAjMwUzLwczLyQzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
(3)當時,對角陣稱為數量矩陣。
![對角化](/img/d/1e5/wZwpmLxczMyMjM4cjNxMzM1UTM1QDN5MjM5ADMwAjMwUzL3YzL0UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/0/30d/wZwpmLyUDM3QjN1cDMyMzM1UTM1QDN5MjM5ADMwAjMwUzL3AzLzQzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
(4)當時,叫做單位矩陣,記作E,有。
運算規律
和差運算
同階對角陣的和、差仍是對角陣,有:
![對角化](/img/c/08f/wZwpmL3AzM3kDN4kzNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5czL0IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
數乘運算
數與對角陣的乘積仍為對角陣,有:
![對角化](/img/2/6e4/wZwpmL4cDMxMDN5gjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL4YzL3czLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
乘積運算
同階對角矩陣的乘積仍為對角陣,且它們的乘積是可交換的,有:
![對角化](/img/7/c99/wZwpmLyEjNyYTOxkTOwMzM1UTM1QDN5MjM5ADMwAjMwUzL5kzL0MzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
矩陣相似於對角矩陣的條件
充要條件
n階矩陣A相似於對角矩陣的充要條件是A有n個線性無關的特徵向量。
證明過程:
(1)必要性。
設有可逆矩陣P,使得
![對角化](/img/1/f33/wZwpmL3UDM2UzM0cjNxMzM1UTM1QDN5MjM5ADMwAjMwUzL3YzL3QzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![對角化](/img/1/ed3/wZwpmL0czNyADO3kjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzLyIzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
令矩陣P的n個列向量為,則有
![對角化](/img/3/d9a/wZwpmLzIDOzEjNwgDMyMzM1UTM1QDN5MjM5ADMwAjMwUzL4AzLyIzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/2/8ee/wZwpmL2ITO2ATM2QTMxMzM1UTM1QDN5MjM5ADMwAjMwUzL0EzL1czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/1/ed3/wZwpmL0czNyADO3kjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzLyIzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/8/744/wZwpmLzcTM1MTMwgzNxMzM1UTM1QDN5MjM5ADMwAjMwUzL4czL0EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
因而,因為P為可逆矩陣,所以為線性無關的非零向量,它們分別是矩陣A對應於特徵值的特徵向量。
(2)充分性。
![對角化](/img/1/ed3/wZwpmL0czNyADO3kjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzLyIzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/8/744/wZwpmLzcTM1MTMwgzNxMzM1UTM1QDN5MjM5ADMwAjMwUzL4czL0EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![對角化](/img/2/8ee/wZwpmL2ITO2ATM2QTMxMzM1UTM1QDN5MjM5ADMwAjMwUzL0EzL1czLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對角化](/img/b/292/wZwpmL4UTO0gTOykjNwMzM1UTM1QDN5MjM5ADMwAjMwUzL5YzL0YzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![對角化](/img/6/af7/wZwpmL4IDNzkjNwcjNxMzM1UTM1QDN5MjM5ADMwAjMwUzL3YzL3UzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
由必要性的證明可見,如果矩陣A有n個線性無關的特徵向量,設它們為,對應的特徵值分別為,則有,以這些向量為列構造矩陣,則P可逆,且,其中C如下:
![對角化](/img/d/644/wZwpmL3ADN2MjM4kTNxMzM1UTM1QDN5MjM5ADMwAjMwUzL5UzLzYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![對角化](/img/9/712/wZwpmL4YTM2IDOxMjNwMzM1UTM1QDN5MjM5ADMwAjMwUzLzYzLzUzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
即。
推論
若n階矩陣A有n個不同的特徵值,則A必能相似於對角矩陣。
說明:當A的特徵方程有重根時,就不一定有n個線性無關的特徵向量,從而未必能對角化。