性質
基本知識
![對數公式](/img/e/da5/wZwpmL3MzMwEzM0QzMzEzM1UTM1QDN5MjM5ADMwAjMwUzL0MzL1EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
① ;
![對數公式](/img/8/abe/wZwpmL4EDOzUDM5UTMzEzM1UTM1QDN5MjM5ADMwAjMwUzL1EzL0AzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
② ;
③負數與零無對數.
![對數公式](/img/9/23c/wZwpmLwADM1kTO0kTMzEzM1UTM1QDN5MjM5ADMwAjMwUzL5EzLxgzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![對數公式](/img/6/fcc/wZwpmL4MjN2gTO5MTMzEzM1UTM1QDN5MjM5ADMwAjMwUzLzEzLzIzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
④ * =1;
恆等式及證明
![對數公式運算的理解與推導by尋韻天下](/img/5/0fc/wZwpmLzADM0ITN1UjMzEzM1UTM1QDN5MjM5ADMwAjMwUzL1IzL3UzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
a^log(a)(N)=N (a>0 ,a≠1) 推導:log(a) (a^N)=N恆等式證明
在a>0且a≠1,N>0時
設:當log(a)(N)=t,滿足(t∈R)
則有a^t=N;
a^(log(a)(N))=a^t=N;
證明完畢
運算法則
![對數公式](/img/c/fa0/wZwpmL2QDO4ITO1kTMzEzM1UTM1QDN5MjM5ADMwAjMwUzL5EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
①
![對數公式](/img/b/b07/wZwpmLzQTN2IzN1ATMzEzM1UTM1QDN5MjM5ADMwAjMwUzLwEzL1QzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
②
![對數公式](/img/6/b06/wZwpmLzUzNyUTMzUTMzEzM1UTM1QDN5MjM5ADMwAjMwUzL1EzL0YzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
③
(M,N∈R)
![對數公式](/img/9/c7a/wZwpmL2EjMzYTM4UzMzEzM1UTM1QDN5MjM5ADMwAjMwUzL1MzLwUzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![對數公式](/img/b/43f/wZwpmL4MTO1QTOwcDNzEzM1UTM1QDN5MjM5ADMwAjMwUzL3QzL4MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
如果 ,則m為數a的自然對數,即 ,e=2.718281828…為自然對數
![對數公式](/img/d/148/wZwpmL2MzM1ATO3EzMzEzM1UTM1QDN5MjM5ADMwAjMwUzLxMzLwYzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![對數公式](/img/2/a6a/wZwpmLyUzM3YDOwgTN2IDN0UTMyITNykTO0EDMwAjMwUzL4UzLyAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
的底,其為無限不循環小數。定義: 若 則
基本性質:
![對數公式](/img/5/425/wZwpmL0YDO0MTM3IzMzEzM1UTM1QDN5MjM5ADMwAjMwUzLyMzL1EzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
1、
![對數公式](/img/c/fa0/wZwpmL2QDO4ITO1kTMzEzM1UTM1QDN5MjM5ADMwAjMwUzL5EzL3EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
2、
![對數公式](/img/f/315/wZwpmL3UTN2MTOxITMzEzM1UTM1QDN5MjM5ADMwAjMwUzLyEzLyAzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
3、
![對數公式](/img/6/b06/wZwpmLzUzNyUTMzUTMzEzM1UTM1QDN5MjM5ADMwAjMwUzL1EzL0YzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
4、
![對數公式](/img/8/163/wZwpmL3EDM5kzNzQTMzEzM1UTM1QDN5MjM5ADMwAjMwUzL0EzL1YzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
5、
推導:
![對數公式](/img/2/a6a/wZwpmLyUzM3YDOwgTN2IDN0UTMyITNykTO0EDMwAjMwUzL4UzLyAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![對數公式](/img/b/1fb/wZwpmLzITM3czN3EDNzEzM1UTM1QDN5MjM5ADMwAjMwUzLxQzLxAzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![對數公式](/img/5/425/wZwpmL0YDO0MTM3IzMzEzM1UTM1QDN5MjM5ADMwAjMwUzLyMzL1EzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
1、因為 ,代入則 ,即 。
2、MN=M×N
由基本性質1(換掉M和N)
![對數公式](/img/4/552/wZwpmL0cDN4gDN2UzMzEzM1UTM1QDN5MjM5ADMwAjMwUzL1MzL0MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
由指數的性質
![對數公式](/img/9/61d/wZwpmL0AzM3ITM4YTMzEzM1UTM1QDN5MjM5ADMwAjMwUzL2EzLwYzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
又因為指數函式是單調函式,所以
![對數公式](/img/6/8d1/wZwpmL1cjN1czNwcDNzEzM1UTM1QDN5MjM5ADMwAjMwUzL3QzLyYzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
3、與(2)類似處理 M/N=M÷N
由基本性質1(換掉M和N)
![對數公式](/img/3/a81/wZwpmL0AjM0UTN1EjMzEzM1UTM1QDN5MjM5ADMwAjMwUzLxIzL0EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
由指數的性質
![對數公式](/img/0/fc9/wZwpmL0YjN2EzM1ATNzEzM1UTM1QDN5MjM5ADMwAjMwUzLwUzL0YzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
又因為指數函式是單調函式,所以
![對數公式](/img/f/315/wZwpmL3UTN2MTOxITMzEzM1UTM1QDN5MjM5ADMwAjMwUzLyEzLyAzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
4、與(2)類似處理
由基本性質1(換掉M)
![對數公式](/img/3/7f5/wZwpmL3IjN1UjNxIzMzEzM1UTM1QDN5MjM5ADMwAjMwUzLyMzL4IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
由指數的性質
![對數公式](/img/e/f40/wZwpmL4cTM1cDOyYzMzEzM1UTM1QDN5MjM5ADMwAjMwUzL2MzL4czLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
又因為指數函式是單調函式,所以
![對數公式](/img/6/b06/wZwpmLzUzNyUTMzUTMzEzM1UTM1QDN5MjM5ADMwAjMwUzL1EzL0YzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
或
![對數基本性質4推導過程](/img/0/423/wZwpmL0EzN3IDO5QzMzEzM1UTM1QDN5MjM5ADMwAjMwUzL0MzL4EzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![對數公式](/img/8/54d/wZwpmLzMDO0EDN5MTMzEzM1UTM1QDN5MjM5ADMwAjMwUzLzEzL1IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
由基本性質2(展開 ,如圖所示)
基本性質4推廣
![對數公式](/img/7/514/wZwpmLxADM1UDMwIzMzEzM1UTM1QDN5MjM5ADMwAjMwUzLyMzL0IzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![對數公式](/img/7/a2e/wZwpmLxIDM3EDOwMTMzEzM1UTM1QDN5MjM5ADMwAjMwUzLzEzL3IzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![對數公式](/img/4/21e/wZwpmL3EDNwEzMyIjMzEzM1UTM1QDN5MjM5ADMwAjMwUzLyIzL1MzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
推導如下: 由換底公式(見下面)[ 是 ,e稱作自然對數的底]
![對數公式](/img/3/138/wZwpmL2UzMyYDNxMzMzEzM1UTM1QDN5MjM5ADMwAjMwUzLzMzLyEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![對數公式](/img/7/df2/wZwpmLzEDNxczN2cTMzEzM1UTM1QDN5MjM5ADMwAjMwUzL3EzLyEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
換底公式的推導: 設 則
![對數公式](/img/f/a63/wZwpmL4MDOwkTN5AzMzEzM1UTM1QDN5MjM5ADMwAjMwUzLwMzL1gzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![對數公式](/img/8/993/wZwpmLyEzMzEjN0ATMzEzM1UTM1QDN5MjM5ADMwAjMwUzLwEzL3gzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
其中
![對數公式](/img/1/3f7/wZwpmL2QDM5QTN2YzMzEzM1UTM1QDN5MjM5ADMwAjMwUzL2MzLxAzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
得:
![對數公式](/img/9/241/wZwpmL0AjM3EDN3QTMzEzM1UTM1QDN5MjM5ADMwAjMwUzL0EzLwEzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
由基本性質4可得
![對數公式](/img/7/514/wZwpmLxADM1UDMwIzMzEzM1UTM1QDN5MjM5ADMwAjMwUzLyMzL0IzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
再由換底公式
換底公式
設b=a^m,a=c^n,則b=(c^n)^m=c^(mn)………………………………①
對①取以a為底的對數,有:log(a)(b)=m……………………………..②
對①取以c為底的對數,有:log(c)(b)=mn……………………………③
![對數公式](/img/6/87f/wZwpmLzMzM2MTM0ADNzEzM1UTM1QDN5MjM5ADMwAjMwUzLwQzLyIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
③/②,得:log(c)(b)/log(a)(b)=n=log(c)(a)∴log(a)(b)=log(c)(b)/log(c)(a)
註:log(a)(b)表示以a為底b的對數。
換底公式拓展:
以e為底數和以a為底數的公式代換:
logae=1/(lna)
推導公式
log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b)
loga(b)*logb(a)=1
loge(x)=ln(x)
lg(x)=log10(x)
求導數
(xlogax)'=logax+1/lna
其中,logax中的a為底數,x為真數;
(logax)'=1/xlna
特殊的即a=e時有
(logex)'=(lnx)'=1/x