婆什迦羅第二

婆什迦羅第二

他比牛頓和萊布尼茨早五個世紀就構想了微積分,而他們被視為微積分的創立者。[來源請求]現在稱為"微分係數"的一個實例和現在稱為羅爾定理的基本思想可以在他的著作中找到(Madhava (1340年),而Kerala學派進一步在印度發展了微積分)。他對配爾方程的研究比約翰·配爾要早好幾個世紀。他給出了勾股定理的一個證明,該證明是通過用兩種不同方法計算相同面積然後消去一些項以給出 a² + b² = c².他也因證明了任何數除以0是無窮大而無窮大除以任何數依然是無窮大而著稱。

婆什迦羅第二

婆什迦羅第二(1114~約1185)

BhāskaraⅡ
印度數學家,天文學家。1114年(一說1115年)生於比賈布爾(屬邁索爾邦)。1150年著《歷算書》,書中比較全面系統地介紹了算術、代數和幾何知識。記載了12世紀時印度記數法,度、量、衡、面積及貨幣的各種單位互換,包括自然數、分數、負數在內的8種基本運算。

正文

印度數學家、天文學家。生於比賈布爾(屬邁索爾邦)。1150年著《歷算書》,全書分套用問題、代數、天球和行星數學等四篇。前二篇為數學,後二篇為天文學。套用問題篇側重套用,代數篇側重理論。婆什迦羅在書中比較全面系統地介紹了算術、代數和幾何知識。記載了12世紀時印度記數法,度、量、衡、面積及貨幣的各種單位互換,包括自然數、分數、負數在內的八種基本運算。三率法發展到十一率法,假設法和逆推法也有了進一步發展。利息、商品交換、合金成分、土方、倉庫容積、水利建設等各種與社會、經濟活動有關的數學問題在他的書中也有充分反映。在代數方面關於一次不定方程(組)問題有了發展,還出現了一些三次和四次方程,並得到了一些解法。在幾何方面新創已知三邊的三解形面積求法,直角三角形勾股弦和差公式。對於球表面積和球體體積也給出正確公式。
公元 600年左右印度還有一個同名的婆什迦羅的數學家,稱為婆什迦羅第一。

配圖

相關連線

相關詞條

相關搜尋

熱門詞條

聯絡我們