基準數

基準數就是選一個數作為標準,方便其他的數和它比較的一個數。通常選取這組數據的最大值和最小值中間的某個比較整的數。

套用

多用於一組比較接近的數的求和或求平均值

基準數法用於求和:

和=基準數×個數+浮動值

實例

例如:

123+131+127+129+137+132

以130為基準數,

原式=130×6-7+1-3-1+7+2=780-1=779

基準數法用於求平均數:

平均數=基準數+浮動值÷個數

例如:198,195,204,203,199,204,206,199,201,194求平均數

以200為基準數:

平均數=200+(-2-5+4+3-1+4+6-1+1-6)÷10

=200.3

例如:

(1)計算:23+20+19+22+18+21

解:仔細觀察,各個加數的大小都接近20,所以可以把每個加數先按20相加,然後再把少算的加上,把多算的減去.

23+20+19+22+18+21

=20×6+3+0-1+2-2+1

=120+3=123

6個加數都按20相加,其和=20×6=120.23按20計算就少加了“3”,所以再加上“3”;19按20計算多加了“1”,所以再減去“1”,以此類推.

(2)計算:102+100+99+101+98

解:方法1:仔細觀察,可知各個加數都接近100,所以選100為基準數,採用基準數法進行巧算.

102+100+99+101+98

=100×5+2+0-1+1-2=500

方法2:仔細觀察,可將5個數重新排列如下:(實際上就是把有的加數帶有符號搬家)

102+100+99+101+98

=98+99+100+101+102

=100×5=500

可發現這是一個等差連續數的求和問題,中間數是100,個數是5.

求22+24+26+……+42的和

A 348 B350 C?352 D354

題解析:本題所用公式為(首項+末項)÷2×項數,項數=(末項-首項)÷公差+1,所以,本題的項數=(42-22)÷2+1=11,答案為(22+42)÷2×11=352。故本題的正確答案為C

相關詞條

相關搜尋

熱門詞條

聯絡我們