基本介紹
由分式線性函式
![分式線性變換](/img/1/e42/wZwpmL0YDM5YzNzkDN0MTN1UTM1QDN5MjM5ADMwAjMwUzL5QzLyQzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
所給出的映射叫做 分式線性變換,它有幾個特殊形式:
![分式線性變換](/img/4/faa/wZwpmL1gDN3kjM2ITN0MTN1UTM1QDN5MjM5ADMwAjMwUzLyUzL2EzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
(1)平移變換這是整個平面的一個平移,每一個點都移動一個向量b。
![分式線性變換](/img/6/187/wZwpmLwEDM5kDN1EjN0MTN1UTM1QDN5MjM5ADMwAjMwUzLxYzLyMzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![分式線性變換](/img/0/92c/wZwpmL3AzM1UzMyEDMyADN0UTMyITNykTO0EDMwAjMwUzLxAzL3UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![分式線性變換](/img/0/92c/wZwpmL3AzM1UzMyEDMyADN0UTMyITNykTO0EDMwAjMwUzLxAzL3UzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
(2)旋轉變換(是實數),這是以原點為中心的一個旋轉,旋轉角為。
![分式線性變換](/img/6/904/wZwpmLxEDO5cjM3EDN0MTN1UTM1QDN5MjM5ADMwAjMwUzLxQzLwgzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
(3)相似變換這是一個以原點為中心,伸張係數為r的相似變換。
![分式線性變換](/img/1/96c/wZwpmLzczM2MjN4ADN0MTN1UTM1QDN5MjM5ADMwAjMwUzLwQzLygzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![分式線性變換](/img/a/5ed/wZwpmL0gDNwYzM5cjN0MTN1UTM1QDN5MjM5ADMwAjMwUzL3YzLwUzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![分式線性變換](/img/b/25d/wZwpmL2EzM2ITOyUjN0MTN1UTM1QDN5MjM5ADMwAjMwUzL1YzLzMzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
(4)倒數變換它又可以分解為:及前者是一個關於單位圓周的反演變換,後者是一個關於實軸的反射變換。
對任意分式線性變換,可分為兩種情況;
![分式線性變換](/img/9/78d/wZwpmL4EzM5kjM4cTN0MTN1UTM1QDN5MjM5ADMwAjMwUzL3UzLwIzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
1.若c=0,它是一個整線性變換可由(1)一(3)三種簡單變換疊合而成。
![分式線性變換](/img/7/ed6/wZwpmL2AjM2UjM3ATN0MTN1UTM1QDN5MjM5ADMwAjMwUzLwUzL4MzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![分式線性變換](/img/6/3e8/wZwpmL3gTMwQjMyIjN0MTN1UTM1QDN5MjM5ADMwAjMwUzLyYzLxEzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
2.若把它改寫成,可由(1)—(4)四種簡單變換疊合而成 。
分式線性變換的性質
定理1
任一個分式線性函式(1),給出一個從閉z平面到閉w平面的雙方單值的保角變換(這裡我們定義兩條曲線交在無窮遠處的角,等於它們在倒數變換下的象曲線在原點的交角) 。
定理2
(保圓性)分式線性變換把圓周變成圓周。
這裡及下面幾個定理中,所說到的圓周,都包括直線在內,也就是說,把直線看成是通過無窮遠點的圓周。這樣,一個圓周經過分式線性變換後,究竟是變成直線還是普通圓周,只要看它上面有沒有無窮遠點就可以確定。
定理3
(保對稱點不變性)分式線性變換把對某一圓周為對稱的點,變為對這個圓周的象對稱的點。
定理4
![分式線性變換](/img/5/6e5/wZwpmL4MDN3UTM4kTMzATN1UTM1QDN5MjM5ADMwAjMwUzL5EzLxgzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![分式線性變換](/img/0/7c4/wZwpmL3IzMxgTOycjN0MTN1UTM1QDN5MjM5ADMwAjMwUzL3YzL0gzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![分式線性變換](/img/5/6e5/wZwpmL4MDN3UTM4kTMzATN1UTM1QDN5MjM5ADMwAjMwUzL5EzLxgzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![分式線性變換](/img/0/7c4/wZwpmL3IzMxgTOycjN0MTN1UTM1QDN5MjM5ADMwAjMwUzL3YzL0gzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
任給z平面上三個不同的點和w平面上的三個點則存在唯一個分式線性變換,把分別變為而且這個分式線性變換可表為
![分式線性變換](/img/1/123/wZwpmLwETM4MzM1UTN0MTN1UTM1QDN5MjM5ADMwAjMwUzL1UzLwMzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![分式線性變換](/img/d/b7b/wZwpmLzAzM4gDNzMzN0MTN1UTM1QDN5MjM5ADMwAjMwUzLzczL1EzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
這裡。
![分式線性變換](/img/b/8cf/wZwpmL4YzMwADN3kTN0MTN1UTM1QDN5MjM5ADMwAjMwUzL5UzLxIzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![分式線性變換](/img/6/301/wZwpmLyITMykTM4gTN2UzM1UTM1QDN5MjM5ADMwAjMwUzL4UzLwQzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![分式線性變換](/img/b/50e/wZwpmL1IzMzUDN2EjN0MTN1UTM1QDN5MjM5ADMwAjMwUzLxYzLwEzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![分式線性變換](/img/8/f4c/wZwpmL0YDN3YjN3ITN0MTN1UTM1QDN5MjM5ADMwAjMwUzLyUzL3QzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
如果或中的某一個是只需在(2)式中把含有這個數的因子改為1即可,例如,當時,(2)式成為
![分式線性變換](/img/2/376/wZwpmL0QjN2IjN0cjN0MTN1UTM1QDN5MjM5ADMwAjMwUzL3YzLwczLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
即
![分式線性變換](/img/3/869/wZwpmL3UDOygDMzIjN0MTN1UTM1QDN5MjM5ADMwAjMwUzLyYzLwczLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![分式線性變換](/img/5/6e5/wZwpmL4MDN3UTM4kTMzATN1UTM1QDN5MjM5ADMwAjMwUzL5EzLxgzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![分式線性變換](/img/d/5e0/wZwpmL1QjN4cjN4AjMzATN1UTM1QDN5MjM5ADMwAjMwUzLwIzL2gzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![分式線性變換](/img/3/c66/wZwpmLxEzN1ITO4MTNxMzM1UTM1QDN5MjM5ADMwAjMwUzLzUzL2AzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![分式線性變換](/img/0/b7f/wZwpmL3YDNycTO2cjNxMzM1UTM1QDN5MjM5ADMwAjMwUzL3YzL0gzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![分式線性變換](/img/d/009/wZwpmL4ADMyMzN3cTN0MTN1UTM1QDN5MjM5ADMwAjMwUzL3UzLyEzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![分式線性變換](/img/6/c97/wZwpmL0YDOzADOyUTN0MTN1UTM1QDN5MjM5ADMwAjMwUzL1UzL2EzLt92YucmbvRWdo5Cd0FmL0E2LvoDc0RHa.jpg)
![分式線性變換](/img/5/ada/wZwpmLzETN0ETNwYzMzEzM1UTM1QDN5MjM5ADMwAjMwUzL2MzLzMzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![分式線性變換](/img/d/5b4/wZwpmLwQjN3AjNyAzMzEzM1UTM1QDN5MjM5ADMwAjMwUzLwMzL1gzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![分式線性變換](/img/a/2a7/wZwpmLxQDOxYjN0YDN0MTN1UTM1QDN5MjM5ADMwAjMwUzL2QzLxAzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![分式線性變換](/img/1/9b1/wZwpmL0EzM5gzMwYjM2EzM1UTM1QDN5MjM5ADMwAjMwUzL2IzLyczLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
![分式線性變換](/img/9/c9c/wZwpmL1YzM2cDN1YDN0MTN1UTM1QDN5MjM5ADMwAjMwUzL2QzLzQzLt92YucmbvRWdo5Cd0FmLyE2LvoDc0RHa.jpg)
![分式線性變換](/img/b/5e3/wZwpmLygDM3YzM3kjN0MTN1UTM1QDN5MjM5ADMwAjMwUzL5YzLxAzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
由保圓性可知,分式線性變換(1),把由三點所確定的圓周C,變成由三點所確定的圓周C',圓周C和C' 分別將z平免和w平面分成兩個區域及和及,而且變換(1)把由經走向時,位在左邊的區域,變成在w平面上,由經走向時,位在左邊的區域。
![分式線性變換](/img/2/813/wZwpmLxcDMwgjN0EjN0MTN1UTM1QDN5MjM5ADMwAjMwUzLxYzLxAzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
![分式線性變換](/img/e/bfb/wZwpmL0YzMykDN4ADN0MTN1UTM1QDN5MjM5ADMwAjMwUzLwQzLwUzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
利用分式線性變換解題時,下述事實是經常有用的: 如果一個分式線性變換滿足條件則這個變換可以表為
![分式線性變換](/img/4/678/wZwpmLxYzN2cTMzcTN0MTN1UTM1QDN5MjM5ADMwAjMwUzL3UzLyEzLt92YucmbvRWdo5Cd0FmLwE2LvoDc0RHa.jpg)
(k為任意復常數).
![分式線性變換](/img/a/16b/wZwpmL4gzM0ETOxUTN0MTN1UTM1QDN5MjM5ADMwAjMwUzL1UzL4EzLt92YucmbvRWdo5Cd0FmLzE2LvoDc0RHa.jpg)
![分式線性變換](/img/4/dd1/wZwpmL3gzN3QTM0ADN0MTN1UTM1QDN5MjM5ADMwAjMwUzLwQzLxgzLt92YucmbvRWdo5Cd0FmLxE2LvoDc0RHa.jpg)
特別地,若則。