六邊形

六邊形

六邊形(Hexagonal),多邊形的一種,指所有有六條邊和六個角的多邊形。自然界中,苯與石墨的分子結構、龜殼、蜂巢等都呈現正六邊形形狀。

基本信息

概念

六邊形六邊形
由六條邊組成的圖形,這就是六邊形。由在同一平面且不在同一直線上的三條或三條以上的線段首尾順次連結且不相交所組成的封閉圖形叫做多邊形(簡述:由三條或三條以上的線段首位順次連線所組成的封閉圖形叫做多邊形),在不同平面上的多條線段首尾順次連結且不相交所組成的圖形也被稱為多邊形,是廣義的多邊形。

組成多邊形的線段至少有3條,三角形是最簡單的多邊形。組成多邊形的每一條線段叫做多邊形的邊;相鄰的兩條線段的公共端點叫做多邊形的頂點;多邊形相鄰兩邊所成的角叫做多邊形的內角;連線多邊形的兩個不相鄰頂點的線段叫做多邊形的對角線。

分類

多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。

多邊形也可以分為凸多邊形凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。(此定理只適用於凸多邊形,即平面多邊形,空間多邊性不適用)廣義的多邊形也包括五角星等圖形。

定理

n邊形的內角和等於180°(n-2)。可逆用:n邊形的邊等於(內角和÷180°+2)多邊形 ,過n邊形一個頂點有n-3條對角線•n邊形共有n×(n-3)÷2個對角線。n邊形過一個頂點引出所有對角線後,把多邊形分成n-2個三角形。推論:1.任意凸形多邊形的外角和等於360°。2.多邊形對角線的計算公式:n邊形的對角線條數等於1/2·n(n-3)。3.各邊相等,各角也相等的多邊形叫做正多邊形。

相關搜尋

熱門詞條

聯絡我們