原理
顯然,在這類加密過程中,加密是自己,解密還得是自己,而所謂解密,實際上就是重新加一次密,所套用的“密碼”也就是輸入的明文。
套用
不可逆加密算法不存在密鑰保管和分發問題,非常適合在分散式網路系統上使用,但因加密計算複雜,工作量相當繁重,通常只在數據量有限的情形下使用,如廣泛套用在計算機系統中的口令加密,利用的就是不可逆加密算法。近年來,隨著計算機系統性能的不斷提高,不可逆加密的套用領域正在逐漸增大。在計算機網路中套用較多不可逆加密算法的有RSA公司發明的MD5算法和由美國國家標準局建議的不可逆加密標準SHS(Secure Hash Standard:安全雜亂信息標準)等。
MD5算法
簡介
MD5算法: MD5的全稱是Message-Digest Algorithm 5,它是基於Hash變換而來的,MD5將任意長度的“位元組串”變換成一個128bit的大整數,並且它是一個不可逆的字元串變換算法,換句話說就是,即使你看到源程式和算法描述,也無法將一個MD5的值變換回原始的字元串,從數學原理上說,是因為原始的字元串有無窮多個,這有點象不存在反函式的數學函式。
加密原理
在MD5算法中,首先需要對信息進行填充,使其位長度對512求余的結果等於448。因此,信息的位長度(Bits Length)將被擴展至N*512+448,即N*64+56個位元組(Bytes),N為一個正整數。填充的方法如下,在信息的後面填充一個1和無數個0,直到滿足上面的條件時才停止用0對信息的填充。然後,再在這個結果後面附加一個以64位二進制表示的填充前信息長度。經過這兩步的處理,現在的信息位元組長度=N*512+448+64=(N+1)*512,即長度恰好是512的整數倍。這樣做的原因是為滿足後面處理中對信息長度的要求。
加密過程
MD5中有四個32位被稱作連結變數(Chaining Variable)的整數參數,他們分別為:A=0x01234567,B=0x89abcdef,C=0xfedcba98,D=0x76543210。
當設定好這四個連結變數後,就開始進入算法的四輪循環運算。循環的次數是信息中512位信息分組的數目。
將上面四個連結變數複製到另外四個變數中:A到a,B到b,C到c,D到d。
主循環有四輪(MD4隻有三輪),每輪循環都很相似。第一輪進行16次操作。每次操作對a、b、c和d中的其中三個作一次非線性函式運算,然後將所得結果加上第四個變數,文本的一個子分組和一個常數。再將所得結果向右環移一個不定的數,並加上a、b、c或d中之一。最後用該結果取代a、b、c或d中之一。
以一下是每次操作中用到的四個非線性函式(每輪一個)。
F(X,Y,Z) =(X&Y)|((~X)&Z)
G(X,Y,Z) =(X&Z)|(Y&(~Z))
H(X,Y,Z) =X^Y^Z
I(X,Y,Z)=Y^(X|(~Z))
(&是與,|是或,~是非,^是異或)
這四個函式的說明:如果X、Y和Z的對應位是獨立和均勻的,那么結果的每一位也應是獨立和均勻的。F是一個逐位運算的函式。即,如果X,那么Y,否則Z。函式H是逐位奇偶操作符。
假設Mj表示訊息的第j個子分組(從0到15),<<
FF(a,b,c,d,Mj,s,ti)表示a=b+((a+(F(b,c,d)+Mj+ti)<< GG(a,b,c,d,Mj,s,ti)表示a=b+((a+(G(b,c,d)+Mj+ti)<< HH(a,b,c,d,Mj,s,ti)表示a=b+((a+(H(b,c,d)+Mj+ti)<< II(a,b,c,d,Mj,s,ti)表示a=b+((a+(I(b,c,d)+Mj+ti)<<
這四輪(64步)是:
第一輪
FF(a,b,c,d,M0,7,0xd76aa478)
FF(d,a,b,c,M1,12,0xe8c7b756)
FF(c,d,a,b,M2,17,0x242070db)
FF(b,c,d,a,M3,22,0xc1bdceee)
FF(a,b,c,d,M4,7,0xf57c0faf)
FF(d,a,b,c,M5,12,0x4787c62a)
FF(c,d,a,b,M6,17,0xa8304613)
FF(b,c,d,a,M7,22,0xfd469501)
FF(a,b,c,d,M8,7,0x698098d8)
FF(d,a,b,c,M9,12,0x8b44f7af)
FF(c,d,a,b,M10,17,0xffff5bb1)
FF(b,c,d,a,M11,22,0x895cd7be)
FF(a,b,c,d,M12,7,0x6b901122)
FF(d,a,b,c,M13,12,0xfd987193)
FF(c,d,a,b,M14,17,0xa679438e)
FF(b,c,d,a,M15,22,0x49b40821)
第二輪
GG(a,b,c,d,M1,5,0xf61e2562)
GG(d,a,b,c,M6,9,0xc040b340)
GG(c,d,a,b,M11,14,0x265e5a51)
GG(b,c,d,a,M0,20,0xe9b6c7aa)
GG(a,b,c,d,M5,5,0xd62f105d)
GG(d,a,b,c,M10,9,0x02441453)
GG(c,d,a,b,M15,14,0xd8a1e681)
GG(b,c,d,a,M4,20,0xe7d3fbc8)
GG(a,b,c,d,M9,5,0x21e1cde6)
GG(d,a,b,c,M14,9,0xc33707d6)
GG(c,d,a,b,M3,14,0xf4d50d87)
GG(b,c,d,a,M8,20,0x455a14ed)
GG(a,b,c,d,M13,5,0xa9e3e905)
GG(d,a,b,c,M2,9,0xfcefa3f8)
GG(c,d,a,b,M7,14,0x676f02d9)
GG(b,c,d,a,M12,20,0x8d2a4c8a)
第三輪
HH(a,b,c,d,M5,4,0xfffa3942)
HH(d,a,b,c,M8,11,0x8771f681)
HH(c,d,a,b,M11,16,0x6d9d6122)
HH(b,c,d,a,M14,23,0xfde5380c)
HH(a,b,c,d,M1,4,0xa4beea44)
HH(d,a,b,c,M4,11,0x4bdecfa9)
HH(c,d,a,b,M7,16,0xf6bb4b60)
HH(b,c,d,a,M10,23,0xbebfbc70)
HH(a,b,c,d,M13,4,0x289b7ec6)
HH(d,a,b,c,M0,11,0xeaa127fa)
HH(c,d,a,b,M3,16,0xd4ef3085)
HH(b,c,d,a,M6,23,0x04881d05)
HH(a,b,c,d,M9,4,0xd9d4d039)
HH(d,a,b,c,M12,11,0xe6db99e5)
HH(c,d,a,b,M15,16,0x1fa27cf8)
HH(b,c,d,a,M2,23,0xc4ac5665)
第四輪
II(a,b,c,d,M0,6,0xf4292244)
II(d,a,b,c,M7,10,0x432aff97)
II(c,d,a,b,M14,15,0xab9423a7)
II(b,c,d,a,M5,21,0xfc93a039)
II(a,b,c,d,M12,6,0x655b59c3)
II(d,a,b,c,M3,10,0x8f0ccc92)
II(c,d,a,b,M10,15,0xffeff47d)
II(b,c,d,a,M1,21,0x85845dd1)
II(a,b,c,d,M8,6,0x6fa87e4f)
II(d,a,b,c,M15,10,0xfe2ce6e0)
II(c,d,a,b,M6,15,0xa3014314)
II(b,c,d,a,M13,21,0x4e0811a1)
II(a,b,c,d,M4,6,0xf7537e82)
II(d,a,b,c,M11,10,0xbd3af235)
II(c,d,a,b,M2,15,0x2ad7d2bb)
II(b,c,d,a,M9,21,0xeb86d391)
常數ti可以如下選擇:
在第i步中,ti是4294967296*abs(sin(i))的整數部分,i的單位是弧度。(4294967296等於2的32次方)
所有這些完成之後,將A、B、C、D分別加上a、b、c、d。然後用下一分組數據繼續運行算法,最後的輸出是A、B、C和D的級聯。
破解方法
一些黑客破獲這種密碼的方法是一種被稱為“跑字典”的方法。有兩種方法得到字典,一種是日常蒐集的用做密碼的字元串表,另一種是用排列組合方法生成的,先用MD5程式計算出這些字典項的MD5值,然後再用目標的MD5值在這個字典中檢索。
即使假設密碼的最大長度為8,同時密碼只能是字母和數字,共26+26+10=62個字元,排列組合出的字典的項數則是P(62,1)+P (62,2)….+P(62,8),那也已經是一個很天文的數字了,存儲這個字典就需要TB級的磁碟組,而且這種方法還有一個前提,就是能獲得目標賬戶的密碼MD5值的情況下才可以。