股權投資
PIPE的特點
這種融資方式非常受歡迎,相對於二次發行等傳統的融資手段,PIPE的融資成本和融資效率要相對高一些。在PIPE發行中監管機構的審查更少一些,而且也不需要昂貴的路演,這使得獲得資本的成本和時間都大大降低。PIPE比較適合一些快速成長為中型企業的上市公司,他們沒有時間和精力應付傳統股權融資的複雜程式。
發展狀況
2007年至2011年,中國私募股權投資市場PIPE(私人股權投資已上市公司股份)投資案例數量呈現明顯增長態勢,案例數量由53起增加到143起,累計增幅達170%。從其在整個PE投資中占比來看,案例數量占比由2007年的15%增至2011年的37%。
從投資規模來看,2007年至今PIPE類型投資規模基本呈現平穩增長,披露規模由2007年104億美元增至2011年127.7億美元,增幅達23%。其中2008年因全球金融危機影響,投資規模略有下降,2009年因淡馬錫聯合厚朴投資73億美元戰略投資建設銀行的巨額交易使得2009年PIPE投資規模居近6年之首。從PIPE投資在整個PE投資規模占比來看,扣除2008、2009年的超低和超高影響,2010年至今基本維持在35%-45%的波動區間。
2012年至今PIPE投資案例數量按照行業分布來看,製造業、化學工業、金融、醫療健康四個行業分別以16、10、6、6起案例占比23%、16%、10%、10%居前四位;投資規模按照行業分布來看,金融行業、製造業、建築建材行業分別以30.76億美元、6.38億美元、5.57億美元占比49%、10%和9%位居各細分行業前三。
函式
pipe我們用中文叫做管道。
以下講解均是基於Linux為環境:
簡介
所需頭檔案 #include
函式原型 int pipe(int fd[2])
函式傳入值 fd[2]:管道的兩個檔案描述符,之後就是可以直接操作這兩個檔案描述符
返回值 成功 0 失敗 -1
什麼是管道
管道是Linux 支持的最初Unix IPC形式之一,具有以下特點:
管道是半雙工的,數據只能向一個方向流動;需要雙方通信時,需要建立起兩個管道; 只能用於父子進程或者兄弟進程之間(具有親緣關係的進程); 單獨構成一種獨立的檔案系統:管道對於管道兩端的進程而言,就是一個檔案,但它不是普通的檔案,它不屬於某種檔案系統,而是自立門戶,單獨構成一種檔案系統,並且只存在於記憶體中。數據的讀出和寫入:一個進程向管道中寫的內容被管道另一端的進程讀出。寫入的內容每次都添加在管道緩衝區的末尾,並且每次都是從緩衝區的頭部讀出數據。
管道的創建
#include
int pipe(int fd[2])
該函式創建的管道的兩端處於一個進程中間,在實際套用中沒有太大意義,因此,一個進程在由pipe()創建管道後,一般再fork一個子進程,然後通過管道實現父子進程間的通信(因此也不難推出,只要兩個進程中存在親緣關係,這裡的親緣關係指的是具有共同的祖先,都可以採用管道方式來進行通信)。
管道的讀寫規則
管道兩端可分別用描述字fd[0]以及fd[1]來描述,需要注意的是,管道的兩端是固定了任務的。即一端只能用於讀,由描述字fd[0]表示,稱其為管道讀端;另一端則只能用於寫,由描述字fd[1]來表示,稱其為管道寫端。如果試圖從管道寫端讀取數據,或者向管道讀端寫入數據都將導致錯誤發生。一般檔案的I/O函式都可以用於管道,如close、read、write等等。
讀取數據
如果管道的讀端不存在,則認為已經讀到了數據的末尾,讀函式返回的讀出位元組數為0; 當管道的讀端存在時,如果請求的位元組數目大於PIPE_BUF,則返回管道中現有的數據位元組數,如果請求的位元組數目不大於PIPE_BUF,則返回管道中現有數據位元組數(此時,管道中數據量小於請求的數據量);或者返回請求的位元組數(此時,管道中數據量不小於請求的數據量)。註:(PIPE_BUF在include/linux/limits.h中定義,不同的核心版本可能會有所不同。Posix.1要求PIPE_BUF至少為512位元組,red hat 7.2中為4096)。
關於管道的讀規則驗證:
/**************
* readtest.c *
**************/
#include
#include
#include
main()
{
int pipe_fd[2];
pid_t pid;
char r_buf[100];
char w_buf[4];
char* p_wbuf;
int r_num;
int cmd;
memset(r_buf,0,sizeof(r_buf));
memset(w_buf,0,sizeof(w_buf));
p_wbuf=w_buf;
if(pipe(pipe_fd)0)
{
close(pipe_fd[0]);//read
strcpy(w_buf,"111");
if(write(pipe_fd[1],w_buf,4)!=-1)
printf("parent write over ");
close(pipe_fd[1]);//write
printf("parent close fd[1] over ");
sleep⑽;
}
}
/**************************************************
* 程式輸出結果:
* parent write over
* parent close fd[1] over
* read num is 4 the data read from the pipe is 111
* 附加結論:
* 管道寫端關閉後,寫入的數據將一直存在,直到讀出為止.
****************************************************/
向管道中寫入數據:
向管道中寫入數據時,linux將不保證寫入的原子性,管道緩衝區一有空閒區域,寫進程就會試圖向管道寫入數據。如果讀進程不讀走管道緩衝區中的數據,那么寫操作將一直阻塞。
對於沒有設定阻塞標誌的寫操作:(1)當要寫入的數據量不大於PIPE_BUF時,Linux將保證寫入的原子性。如果當前FIFO空閒緩衝區能夠容納請求寫入的位元組數,寫完後成功返回;如果當前FIFO空閒緩衝區不能夠容納請求寫入的位元組數,則返回EAGAIN錯誤,提醒以後再寫。(2)當要寫入的數據量大於PIPE_BUF時,Linux將不再保證寫入的原子性。在寫滿所有FIFO空閒緩衝區後,寫操作返回。
註:只有在管道的讀端存在時,向管道中寫入數據才有意義。否則,向管道中寫入數據的進程將收到核心傳來的SIGPIPE信號,應用程式可以處理該信號,也可以忽略(默認動作則是應用程式終止)。
對管道的寫規則的驗證1:寫端對讀端存在的依賴性
#include
#include
main()
{
int pipe_fd[2];
pid_t pid;
char r_buf[4];
char* w_buf;
int writenum;
int cmd;
memset(r_buf,0,sizeof(r_buf));
if(pipe(pipe_fd)0)
{
sleep⑴; //等待子進程完成關閉讀端的操作
close(pipe_fd[0]);//write
w_buf="111";
if((writenum=write(pipe_fd[1],w_buf,4))==-1)
printf("write to pipe error ");
else
printf("the bytes write to pipe is %d ",writenum);
close(pipe_fd[1]);
}
}
則輸出結果為:Broken pipe,原因就是該管道以及它的所有fork()產物的讀端都已經被關閉。如果在父進程中保留讀端,即在寫完pipe後,再關閉父進程的讀端,也會正常寫入pipe,讀者可自己驗證一下該結論。因此,在向管道寫入數據時,至少應該存在某一個進程,其中管道讀端沒有被關閉,否則就會出現上述錯誤(管道斷裂,進程收到了SIGPIPE信號,默認動作是進程終止)
對管道的寫規則的驗證2:linux不保證寫管道的原子性驗證
#include
#include
#include
main(int argc,char**argv)
{
int pipe_fd[2];
pid_t pid;
char r_buf[4096];
char w_buf[4096*2];
int writenum;
int rnum;
memset(r_buf,0,sizeof(r_buf));
if(pipe(pipe_fd)0)
{
close(pipe_fd[0]);//write
memset(r_buf,0,sizeof(r_buf));
if((writenum=write(pipe_fd[1],w_buf,1024))==-1)
printf("write to pipe error ");
else
printf("the bytes write to pipe is %d ",writenum);
writenum=write(pipe_fd[1],w_buf,4096);
close(pipe_fd[1]);
}
}
輸出結果:
the bytes write to pipe is 1000
the bytes write to pipe 4096
child: readnum is 1000 //注意,此行輸出說明了寫入的非原子性
child: readnum is pipe 1000
child: readnum is pipe 1000
child: readnum is pipe 1000
child: readnum is pipe 1000
child: readnum is pipe 120 //注意,此行輸出說明了寫入的非原子性
child: readnum is pipe 0
child: readnum is pipe 0
......
結論:
寫入數目小於4096時寫入是非原子的!
如果把父進程中的兩次寫入位元組數都改為5000,則很容易得出下面結論:
寫入管道的數據量大於4096位元組時,緩衝區的空閒空間將被寫入數據(補齊),直到寫完所有數據為止,如果沒有進程讀數據,則一直阻塞。
管道套用實例
實例一:用於 shell
管道可用於輸入輸出重定向,它將一個命令的輸出直接定向到另一個命令的輸入。比如,當在某個shell程式(Bourne shell或C shell等)鍵入who│wc -l後,相應shell程式將創建who以及wc兩個進程和這兩個進程間的管道。考慮下面的命令行:
$kill -l 運行結果見附一。
$kill -l | grep SIGRTMIN 運行結果如下:
30) SIGPWR 31) SIGSYS 32) SIGRTMIN 33) SIGRTMIN+1
34) SIGRTMIN+2 35) SIGRTMIN+3 36) SIGRTMIN+4 37) SIGRTMIN+5
38) SIGRTMIN+6 39) SIGRTMIN+7 40) SIGRTMIN+8 41) SIGRTMIN+9
42) SIGRTMIN+10 43) SIGRTMIN+11 44) SIGRTMIN+12 45) SIGRTMIN+13
46) SIGRTMIN+14 47) SIGRTMIN+15 48) SIGRTMAX-15 49) SIGRTMAX-14
實例二:用於具有親緣關係的進程間通信
下面例子給出了管道的具體套用,父進程通過管道傳送一些命令給子進程,子進程解析命令,並根據命令作相應處理。
#include
#include
main()
{
int pipe_fd[2];
pid_t pid;
char r_buf[4];
char* w_buf[256];
int childexit=0;
int i;
int cmd;
memset(r_buf,0,sizeof(r_buf));
if(pipe(pipe_fd)0)
//parent: send commands to child
{
close(pipe_fd[0]);
w_buf[0]="003";
w_buf[1]="005";
w_buf[2]="777";
w_buf[3]="000";
for(i=0;i