在我們研究兩個變數(x,y)之間的相互關係時,通常可以得到一系列成對的數據(x1,y1.x2,y2... xm,ym);將這些數據描繪在x -y直角坐標系中,若發現這些點在一條直線附近,可以令這條直線方程如(式1-1)。
其中:a0、a1 是任意實數
為建立這直線方程就要確定a0和a1,套用《最小二乘法原理》,將實測值Yi與利用(式1-1)計算值(Yj=a0+a1X)的離差(Yi-Yj)的平方和
最小為“最佳化判據”。
令:φ =
(式1-2)
把(式1-1)代入(式1-2)中得:
φ =
(式1-3)
當
最小時,可用函式 φ 對a0、a1求偏導數,令這兩個偏導數等於零。
∑2(a0 + a1*Xi - Yi)(式1-4)
∑2*Xi(a0 + a1*Xi - Yi)(式1-5)
亦即:
na0 + (∑Xi ) a1 = ∑Yi (式1-6)
(∑Xi ) a0 + (∑Xi^2 ) a1 = ∑(Xi*Yi) (式1-7)
得到的兩個關於a0、 a1為未知數的兩個方程組,解這兩個方程組得出:
a0 = (∑Yi) / n - a1(∑Xi) / n (式1-8)
a1 = [n∑Xi Yi - (∑Xi ∑Yi)] / [n∑Xi2 - (∑Xi)2 )] (式1-9)
這時把a0、a1代入(式1-1)中, 此時的(式1-1)就是我們回歸的元線性方程即:數學模型。
在回歸過程中,回歸的關聯式不可能全部通過每個回歸數據點(x1,y1. x2,y2...xm,ym),為了判斷關聯式的好壞,可藉助相關係數“R”,統計量“F”,剩餘標準偏差“S”進行判斷;“R”越趨近於 1 越好;“F”的絕對值越大越好;“S”越趨近於 0 越好。
R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *
在(式1-10)中,m為樣本容量,即實驗次數;Xi、Yi分別為任意一組實驗數據X、Y的數值