高壓共軌電噴發動機

高壓共軌電噴發動機

高壓共軌(Common Rail)電噴技術是指在高壓油泵、壓力感測器和電子控制單元(ECU)組成的閉環系統中,將噴射壓力的產生和噴射過程彼此完全分開的一種供油方式。它是由高壓油泵將高壓燃油輸送到公共供油管(Rail),通過公共供油管內的油壓實現精確控制,使高壓油管壓力(Pressure)大小與發動機的轉速無關,可以大幅度減小柴油機供油壓力隨發動機轉速變化的程度。

簡介

共軌技術是指高壓油泵、壓力感測器和ECU組成的閉環系統中,將噴射壓力的產生和噴射過程彼此完全分開的一種供油方式,由高壓油泵把高壓燃油輸送到公共供油管,通過對公共供油管內的油壓實現精確控制,使高壓油管壓力大小與發動機的轉速無關,可以大幅度減小柴油機供油壓力隨發動機轉速的變化,因此也就減少了傳統柴油機的缺陷。ECU控制噴油器的噴油量,噴油量大小取決於燃油軌(公共供油管)壓力和電磁閥開啟時間的長短。

特點

其主要特點可以概括如下:

共軌腔內的高壓直接用於噴射,可以省去噴油器內的增壓機構;而且共軌腔內是持續高壓,高壓油泵所需的驅動力矩比傳統油泵小得多。

通過高壓油泵上的壓力調節電磁閥,可以根據發動機負荷狀況以及經濟性和排放性的要求對共軌腔內的油壓進行靈活調節,尤其最佳化了發動機的低速性能。

通過噴油器上的電磁閥控制噴射定時、噴射油量以及噴射速率,還可以靈活調節不同工況下預噴射和後噴射的噴射油量以及與主噴射的間隔。

高壓共軌系統由五個部分組成,即高壓油泵、共軌腔及高壓油管、噴油器、電控單元、各類感測器和執行器。供油泵從油箱將燃油泵入高壓油泵的進油口,由發動機驅動的高壓油泵將燃油增壓後送入共軌腔內,再由電磁閥控制各缸噴油器在相應時刻噴油。

預噴射在主噴射之前,將小部分燃油噴入氣缸,在缸內發生預混合或者部分燃燒,縮短主噴射的著火延遲期。這樣缸內壓力升高率和峰值壓力都會下降,發動機工作比較緩和,同時缸內溫度降低使得NOx排放減小。預噴射還可以降低失火的可能性,改善高壓共軌系統的冷起動性能。

主噴射初期降低噴射速率,也可以減少著火延遲期內噴入氣缸內的油量。提高主噴射中期的噴射速率,可以縮短噴射時間從而縮短緩燃期,使燃燒在發動機更有效的曲軸轉角範圍內完成,提高輸出功率,減少燃油消耗,降低碳煙排放。主噴射末期快速斷油可以減少不完全燃燒的燃油,降低煙度和碳氫排放。

結構原理

高壓共軌系統利用較大容積的共軌腔將油泵輸出的高壓燃油蓄積起來,並消除燃油中的壓力波動,然後再輸送給每個噴油器,通過控制噴油器上的電磁閥實現噴射的開始和終止。

高壓共軌

共軌系統將燃油壓力產生和燃油噴射分離開來,如果把單體泵柴油噴射技術比做柴油技術的革命的話,那共軌就可以稱作反叛了,因為它背離了傳統的柴油系統而近似於順序汽油噴射系統。共軌系統開闢了降低柴油發動機排放和噪音的新途徑。

高壓共軌系統 高壓共軌系統

歐洲可以說是柴油車的天堂,在德國柴油轎車占了39%。柴油轎車已有了近70年的歷史,可以說柴油發動機有了突飛猛進的發展。在1997年,博世與賓士公司聯合開發了共軌柴油噴射系統(Common Rail System)。今天在歐洲,眾多品牌的轎車都配有共軌柴油發動機,如標緻公司就有HDI共軌柴油發動機,菲亞特公司有JTD發動機,而德爾福則開發了Multec DCR柴油共軌系統。

高壓油泵

高壓油泵的供油量的設計準則是必須保證在任何情況下的柴油機的噴油量與控制油量之和的需求以及起動和加速時的油量變化的需求。由於共軌系統中噴油壓力的產生與燃油噴射過程無關,且噴油正時也不由高壓油泵的凸輪來保證,因此高壓油泵的壓油凸輪可以按照峰值扭矩最低、接觸應力最小和最耐磨的設計原則來設計。

大部分公司採用由柴油機驅動的三缸徑向柱塞泵來產生高達 135MPa 的壓力。該高壓油泵在每個壓油單元中採用了多個壓油凸輪,使其峰值扭矩降低為傳統高壓油泵的 1/9 ,負荷也比較均勻,降低了運行噪聲。該系統中高壓共軌腔中的壓力的控制是通過對共軌腔中燃油的放泄來實現的,為了減小功率損耗,在噴油量較小的情況下,將關閉三缸徑向柱塞泵中的一個壓油單元使供油量減少。

高壓油軌(共軌管)

共軌管將供油泵提供的高壓燃油分配到各噴油器中,起蓄壓器的作用。它的容積應削減高壓油泵的供油壓力波動和每個噴油器由噴油過程引起的壓力震盪,使高壓油軌中的壓力波動控制在5MPa之下。但其容積又不能太大,以保證共軌有足夠的壓力回響速度以快速跟蹤柴油機工況的變化。

高壓共軌管上還安裝了壓力感測器、液流緩衝器(限流器)和壓力限制器。壓力感測器向ECU提供高壓油軌的壓力信號;液流緩衝器(限流器)保證在噴油器出現燃油漏泄故障時切斷向噴油器的供油,並可減小共軌和高壓油管中的壓力波動;壓力限制器保證高壓油軌在出現壓力異常時,迅速將高壓油軌中的壓力進行放泄。

電控噴油器

電控噴油器是共軌式燃油系統中最關鍵和最複雜的部件,它的作用根據ECU發出的控制信號,通過控制電磁閥的開啟和關閉,將高壓油軌中的燃油以最佳的噴油定時、噴油量和噴油率噴入柴油機的燃燒室。

為了實現預定的噴油形狀,需對噴油器進行合理的最佳化設計。控制室的容積的大小決定了針閥開啟時的靈敏度,控制室的容積太大,針閥在噴油結束時不能實現快速的斷油,使後期的燃油霧化不良;控制室容積太小,不能給針閥提供足夠的有效行程,使噴射過程的流動阻力加大,因此對控制室的容積也應根據機型的最大噴油量合理選擇。

此外噴油嘴的最小噴油壓力取決於回油量孔和進油量孔的流量率及控制活塞的端面面積。這樣在確定了進油量孔、回油量孔和控制室的結構尺寸後,就確定了噴油嘴針閥完全開啟的穩定、最短噴油過程,同時就確定了噴油嘴的穩定最小噴油量。控制室容積的減少可以使針閥的回響速度更快,使燃油溫度對噴嘴噴油量的影響更小。

但控制室的容積不可能無限制減少,它應能保證噴油嘴針閥的升程以使針閥完全開啟。兩個控制量孔決定了控制室中的動態壓力,從而決定了針閥的運動規律,通過仔細調節這兩個量孔的流量係數,可以產生理想的噴油規律。

由於高壓共軌噴射系統的噴射壓力非常高,因此其噴油嘴的噴孔截面積很小,在如此小的噴孔直徑和如此高的噴射壓力下,燃油流動處於極端不穩定狀態,油束的噴霧錐角變大,燃油霧化更好,但貫穿距離變小,因此應改變原柴油機進氣的渦流強度、燃燒室結構形狀以確保最佳的燃燒過程。

對於噴油器電磁閥,由於共軌系統要求它有足夠的開啟速度,考慮到預噴射是改善柴油機性能的重要噴射方式,控制電磁閥的回響時間更應縮短。

高壓油管

高壓油管是連線共軌管和電控噴油器的通道,它應有足夠的燃油流量減小燃油流動時的壓降,並使高壓管路系統中的壓力波動較小,能承受高壓燃油的衝擊作用,且起動時共軌中的壓力能很快建立。各缸高壓油管的長度應儘量相等,使柴油機每一個噴油器有相同的噴油壓力,從而減少發動機各缸之間噴油量的偏差。各高壓油管應儘可能短,使從共軌到噴油嘴的壓力損失最小。BOSCH公司的高壓油管的外經為6mm,內徑為2.4mm,日本電裝公司的高壓油管的外經為8mm,內徑為3mm 。

兩者區別

共軌系統與傳統柴油噴射系統的區別

共軌系統與之前以凸輪軸驅動的柴油噴射系統不同,共軌式柴油噴射系統將噴射壓力的產生和噴射過程彼此完全分開。電磁閥控制的噴油器替代了傳統的機械式噴油器,燃油軌中的燃油壓力由一個徑向柱塞式高壓泵產生,壓力大小與發動機的轉速無關,可在一定範圍內自由設定。共軌中的燃油壓力由一個電磁壓力調節閥控制,根據發動機的工作需要進行連續壓力調節。電控單元作用於噴油器電磁閥上的脈衝信號控制燃油的噴射過程。噴油量的大小取決於燃油軌中的油壓和電磁閥開啟時間的長短,及噴油嘴液體流動特性。

燃油噴射壓力是柴油發動機的重要指標,因為它聯繫著發動機的動力、油耗、排放等。共軌柴油噴射系統已將燃油噴射壓力提高到1800帕。

供油系統

供油系統精確控制

低壓油泵將柴油從油箱中吸出,經過過濾提供給高壓油泵,在低壓泵內有一電磁閥控制燃油到達高壓泵室,燃油進入管形蓄壓器—燃油軌道。在共軌上有壓力感測器時時監測燃油壓力,並將這一信號傳遞給ECU,通過對流量的調節控制共軌內的燃油壓力達到希望值。噴射壓力根據發動機運轉條件的不同控制在200~1800帕之間,再通過電腦控制分別噴射到氣缸中,共軌不但保持了燃油壓力,還消除了壓力波動。

燃油噴射是很複雜的機械、液壓、電子系統聯合做業,要適應發動機各種工況下的工作環境,在燃燒之前燃油必須經過過濾和增壓,在準確的時間以一定的噴射速率噴射到每一個氣缸內。發動機電腦控制廢氣再循環、增壓、排氣後處理系統,以得到最佳的發動機特性和廢氣排放。

近年發展

匹配直噴柴油發動機的轎車在歐洲得到了顯著發展,有著高效和出色的燃油經濟性,並降低了發動機噪音。直噴柴油發動機使用的是泵噴嘴系統,國內生產的1.9TDI寶來就套用這一系統,最高噴射壓力可達到1800帕。

泵噴嘴直噴系統雖好,但燃油壓力不能保持恆定,隨著排放控制日益苛刻,就需要更高且恆定的柴油噴射壓力和更完善的電子控制,於是眾多製造商們就把優點更多的柴油共軌系統作為柴油發動機的發展方向。這一系統有很高的燃油壓力,並能提供柔性燃油分配控制,通過ECU靈活地控制燃油分配、燃油噴射時間、噴射壓力和噴射速率。通過對以上特性的控制,共軌已經使柴油機的回響性和駕駛舒適性達到了汽油發動機水平,同時它具有著顯著的燃油經濟性和低排放特性。

在發動機所有轉速範圍內保證高燃油壓力,高的噴射壓力可以在低轉速工況下獲得良好的燃燒特性。

由凸輪軸驅動控制的軸向柱塞式分配泵的發動機,燃油系統壓力與發動機轉速呈線性關係,在發動機低轉速時形成燃油壓力不足,而共軌系統能夠在發動機的所有轉速範圍內獲得非常高的燃油壓力。靈活的電子控制系統對正時和噴射壓力的控制在發動機各種工況下都能夠獲得低排放和高效率。由於壓力的形成與噴射過程分離,使發動機設計人員在研究燃燒和噴油過程時獲得了更大的自由。可根據發動機工況的要求調節噴射壓力和噴射正時,使發動機在低速工況下也能實現完全燃燒,所以即使是在很低的轉速也能獲得大扭矩。預噴射技術的套用在降低排放和噪音方面取得了更大的進步。

第三代系統

三代柴油共軌系統

柴油共軌系統已開發了三代,它有著強大的技術潛力

第一代共軌高壓泵總是保持在最高壓力,導致能量的浪費和很高的燃油溫度。第二代可根據發動機需求而改變輸出壓力,並具有預噴射和後噴射功能。預噴射降低了發動機噪音:在主噴射之前百萬分之一秒內少量的燃油被噴進了氣缸壓燃,預加熱燃燒室。預熱後的氣缸使主噴射後的壓燃更加容易,缸內的壓力和溫度不再是突然地增加,有利於降低燃燒噪音。在膨脹過程中進行後噴射,產生二次燃燒,將缸內溫度增加200~250℃,降低了排氣中的碳氫化合物。

由於其強大的技術潛力,今天各製造商已經把目光定在了共軌系統第3代——壓電式(piezo)共軌系統,壓電執行器代替了電磁閥,於是得到了更加精確的噴射控制。沒有了回油管,在結構上更簡單。壓力在200~2000之間帕靈活調節。最小噴射量可控制在0.5mm,減小了煙度和NO的排放。

“電控”是指噴油系統由電腦控制, ECU(俗稱電腦)對每個噴油嘴的噴油量、噴油時刻進行精確控制,能使柴油機的燃油經濟性和動力性達到最佳的平衡,而傳統的柴油機則是由機械控制,控制精度無法得以保障。

“高壓”是指噴油系統壓力比傳統柴油機要高出3倍,最高能達到200MPa(而傳統柴油機噴油壓力在60—70 MPa),壓力大霧化好燃燒充分,從而提高了動力性,最終達到省油的目的。

“共軌”是通過公共供油管同時供給各個噴油嘴,噴油量經過ECU精確的計算,同時向各個噴油嘴提供同樣質量、同樣壓力的燃油,使發動機運轉更加平順,從而最佳化柴油機綜合性能。而傳統柴油發動機由各缸各自噴油,噴油量和壓力不一致,運轉不均勻,造成燃燒不平穩,噪音大,油耗高。

現在,國內製造的具備國際先進的電控高壓共軌技術的柴油發動機採用了歐美柴油機的最新核心技術,明顯優於傳統增壓柴油機。它比傳統增壓柴油機燃燒效率提高8%、二氧化碳排放低10%、噪音下降15%,徹底改變了柴油機在人們心目中“噪音大、冒黑煙”的形象。

維護保養

1、高壓共軌系統為保證高壓噴射,精確流量控制,其各組成部分的精度都非常高,偶件間隙控制相當嚴格,部分直線度在0.8微米以下,偶件間隙在1.5-3.7微米之間,所以對柴油清潔度提出了很高的要求。傳統的柴油濾清器只能過濾10微米以上的顆粒,3微米的顆粒過濾效率很差。高壓共軌系統要求濾清器提供95%的水分離效率和98.6%的3-5微米的顆粒過濾效率。目前滿足該性能要求的柴油濾清器均被國外公司壟斷,主機廠配套幾乎都是國外公司的進口產品或外資企業在國內的投資工廠生產,目前也有民族品牌進入主機配套,如蘇州工業園區的達菲特。這些企業的產品質量可靠,主要的有:外資企業:曼.胡(MH)、帕克(Parker)、弗列加(Fleetguard)、博世(BOSCH)等;國產品牌有如達菲特(DIFITE)等。

2、目前高壓共軌系統部件成本昂貴,如果不按使用說明定期更換濾清器會造成噴油器、高壓泵損壞,維修成本相當昂貴。以目前一台重卡的噴油器為例,大概需要1500元以上的費用。

相關詞條

相關搜尋

熱門詞條

聯絡我們